大家好,欢迎收看本期科技小知识,
在这份报告中,我们将大部分分析聚焦在机器学习、人工智能的一个分支、深度学习、机器学习的一个分支。我们总结了二个关键点:1. 简化地,机器学习是从案例和经验(例如数据配置)中习得的算法,而不是依赖于硬件代码和事先定义的规则。换句话说,不是一个开发者来告诉程序如何区分苹果和橘子,而是算法本身通过喂养数据(训练),自己学会如何区分苹果和橘子。2. 深度学习的主要发展是现有人工智能拐点的驱动力量之一。深度学习是机器学习的分集。大多数传统机器学习方法和特点(例如,可能预测的输入和属性)由人来设计。特征工程是一个瓶颈,需要有意义的特定技术。在无人管理的深度学习中,重要特征不是由人类来定义,而是由算法学习和创建。
本期的讲解就到这里,有喜欢的可以点个关注,我们下期再见!
领取专属 10元无门槛券
私享最新 技术干货