首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

R语言用神经网络改进Nelson-Siegel模型拟合收益率曲线分析

相关视频

在之前的文章中,我们提供了Nelson-Siegel模型收敛失败的示例,我们已经展示了它的一些缺陷。

蒙特卡洛模拟帮助我们理解:

3. for(j in 1:N_SIMULATIONS)

5. {

10.     npo = c(newYields, oldYields)

12.     plot(MATURITY_BASES, oldYields, ylim=c(min(npo), max(npo)))

14.     lines(MATURITY_BASES, oldYields)

16.     points(MATURITY_BASES, newYields, col="red", pch=4)

18.     points(newMATs, newNsYields, col="blue")

20.     lines(newMATs, newNsYields, col="blue")

我们要做的是:从一些收益率曲线开始,然后逐步地随机修改收益率,最后尝试NS模型拟合新的收益。因此我们对此进行了模拟。

左右滑动查看更多

01

02

03

04

对于Nelson-Siegel模型,此Monte-Carlo模拟尽管假定前一步的收益(旧收益率)   与NS曲线_完全_匹配。但是,即使如此也无法完全避免麻烦。我们如何发现这些麻烦?在每一步中,我们计算两条相邻曲线之间的最大距离(supremum-norm):

maxDistanceArray[j] = max( abs(oldYieldsArray[j,] - newNsYieldsArray[j,]) )

最后,我们找到到上一条曲线的最大距离的步骤,这就是收敛失败的示例。

_maxDistanceArray_的概率密度   如下所示:

分布尾部在0.08处减小,但对于收益率曲线而言,每天偏移8个点并不罕见。因此,尽管我们进行了1e5 = 10000蒙特卡洛模拟,但只有极少数情况,我们可以将其标记为不良。训练神经网络绝对是不够的。而且,两条Nelson-Siegel曲线可能彼此非常接近,但其参数却彼此远离。由于模型是线性的, 因此可以假设beta的极大变化(例如,超过95分位数)是异常值,并将其标记为不良。

3. idx = intersect(intersect(which(b0 < q_b0), which(b1 < q_b1)), which(b2 < q_b2))

5. par(mfrow=c(3,3))

7. plot(density(log(b0)))

9. plot(density(log(b1)))

11. plot(density(log(b2)))

13. plot(density(log(b0[idx])))

15. plot(density(log(b1[idx])))

17. plot(density(log(b2[idx])))

19. plot(density(b0[idx]))

21. plot(density(b1[idx]))

23. plot(density(b2[idx]))

29. b0 = b0-mean(b0)

31. b1 = b1-mean(b1)

33. b2 = b2-mean(b2)

37. #训练神经网络

39. X = cbind(b0, b1, b2)

41. Y = array(0, dim=(N_SIMULATIONS-1))

43. Y[idx] = 1

然后我们可以训练神经网络

1. SPLT = 0.8

3. library(keras)

5. b = floor(SPLT*(N_SIMULATIONS-1))

14. plot(history)

16. model %>% evaluate(x_test, y_test)

神经网络不仅在样本而且在验证集上都提供了高精度。

如果模拟新数据集,对模型进行修改  :例如修改VOLAs = 0.005*sqrt(MATURITY_BASES)到VOLAs = 0.05*sqrt(MATURITY_BASES)将无法识别新数据集上的不良情况。

不足与展望:尽管我们在两种情况下均对数据进行了归一化和平均化,但是模型波动性的线性变化对尾部分位数具有很高的非线性影响。

那么,我们是否需要一个更复杂的AI模型?

  • 发表于:
  • 原文链接https://page.om.qq.com/page/O0rdzNHo5OPa56cinQL6CRpg0
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

相关快讯

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券