首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

本周三!港科大在读博士侯璐分享权重量化

分享背景

神经网络功能强大,但是其巨大的存储和计算代价也使得它的使用特性,特别是在一些计算能力相对较弱的移动设备上受到了很大的限制。为了解决这个问题, 最近有许多针对于神经网络压缩和加速的工作被提出, 例如神经网络剪枝, 权重矩阵低秩分解,权重量化等。这次分享主要是针对于权重量化这一类方法。

分享题目

基于损失函数的神经网络量化方法

Loss-aware Weight Quantization of Deep Networks

分享提纲

1.概述近期神经网络压缩和加速的工作, 例如神经网络剪枝, 权重矩阵低秩分解,权重量化等。

2.回顾近两年来的权重量化方法,并分析这些方法的优缺点。

3.介绍基于减小最终目标函数的量化方法, 并分析这种方法和其他量化方法的关系和优势。

分享嘉宾

侯璐,中国香港科技大学在读博士,主要研究方向为机器学习。

分享时间

北京时间 3 月 28 日(周三)晚上 8:00

参与方式

  • 发表于:
  • 原文链接http://kuaibao.qq.com/s/20180326A1BCOM00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券