首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Cadence总裁:紧握AI这把钥匙,敲开未来取胜之门

3月20日,SEMICON / FPD China 2024开幕主题演讲在上海浦东嘉里大酒店隆重举行。本次开幕主题演讲汇集了众多全球行业领袖,演讲嘉宾们向现场观众分享了全球产业格局和技术市场趋势等方面的最新观点。

其中,Cadence总裁兼首席执行官Anirudh Devgan博士以“如何在人工智能驱动时代取得成功”为主题,向与会者阐述了AI对企业目前产品矩阵不断完善的推动力,未来研发方向秉承的思维理念,以及对客户服务体系的最新思考。

AI是推动半导体产业持续发展的重要动力

在演讲中,他首先谈到了推动半导体产业未来发展,促进市场新机会迸发的三大动因:芯片与系统的融合、人工智能和数字孪生。他特别强调,在数字化转型过程中,AI将有助于芯片公司和系统公司更好地耦合。

就第一个因素来讲,Anirudh Devgan指出,目前芯片公司和系统公司的融合度越来越高,很多系统公司在做芯片,而芯片厂商也在成为系统公司:“目前Cadence的客户中有大约45%是系统公司。”就半导体行业本身来讲,他预测到2030年,单芯片将有1万亿个晶体管,复杂性增加5到10倍,且半导体市场也将突破1万亿产值,电子系统市场将突破3万亿。其中,AI芯片和汽车芯片两大终端领域是推动半导体市场不断发展主要动力:“未来几年,每辆汽车的半导体成本将会增长到2000至4000美元;同时,训练和推理等应用将助推AI芯片在未来增长到7000亿美元甚至更高规模。”

Anirudh Devgan阐述,相对于芯片与系统融合以及人工智能的应用,“数字孪生”这一概念相对来讲谈论较少,但它对EDA公司价值非凡:“借助数字孪生仿真技术可以有效降低芯片开发成本,在芯片正式进入制造环节之前,数字孪生的仿真、验证可以让芯片的整个研发周期得到极大的优化。”他还就半导体、航空航天和生物制药这三个领域加以对比,指出半导体行业所需的数字化模拟和验证占比远远超过后两者。航空航天能用到的“数字孪生”占比只有20%,剩下的验证占比基本只能通过物理测试完成,而生物医药相关占比只有百分之几,但后两个领域在未来同样会推动“数字孪生”仿真技术不断发展。

三个圆圈与三层蛋糕

接下来,Anirudh Devgan先生谈到了Cadence的智能系统设计战略,它由三个圆圈组成:“最外圈是数据分析和人工智能,中间圈层是系统,内圈则是芯片。如果把我们的计算软件用在系统和数据上,就是系统设计和仿真,如果用在芯片上,就是IP和EDA工具——这是Cadence的核心业务。”

相应地,Cadence的智能系统设计战略则有“三层蛋糕”来实现:“中间层是基于物理、化学或生物学原理的仿真和优化,最上层则是AI和数据编排处理,而下层则是以CPU、GPU、FPGA为代表的加速计算。所有的终端市场都和这三层蛋糕相关,当你吃这个蛋糕时,通常需要把这三层一起吃掉。”

EDA工具与人工智能发展的三个阶段

AI将如何影响半导体行业以及整个社会?具体到EDA工具供应商,AI导向未来的技术路线又会是怎样的?对此,Anirudh Devgan博士非常形象地用了互联网发展的三阶段作为类比,认为人工智能也将有类似的三个阶段:AI赋能芯片的“基础设施建设”阶段,将人工智能应用到芯片设计、系统设计中的第二阶段,以及创建完全开放AI新型市场的第三阶段。

Anirudh Devgan强调,第一阶段相当于互联网时代当年对基础设施网络的铺设,该阶段会有一个较长的周期。讲到此处,Anirudh Devgan以AI推动边缘数据中心演进和芯片3D化设计架构尤其是Chiplet的发展为例,介绍了超级计算机以及Chiplet带来的芯片设计、互连、封装体系的革命化演进。他指出,英伟达,AMD这样的芯片设计巨头成为Cadence的优秀合作伙伴,他们通过软硬件架构融合的思维模式构建数据中心基础设施;而具体到Chiplet技术,各个die不同的工艺节点可以通过导入接口IP封装在一起,带动了AI芯片的不断发展。

Anirudh Devgan着重介绍了Cadence五大产品平台的推出,契合的是人工智能发展的第二阶段,即芯片设计、系统设计的AI化。Cadence目前的EDA产品矩阵,如全新数字芯片设计自动化工具Cerebrus,模拟设计解决方案Virtuoso Studio,验证平台Verisium,先进的PCB设计布线工具Allegro,以及多物理场系统分析解决方案Optimality等,均和AI理念指引下的自动工艺流程紧密相关。

为了更直观地表现AI对传统数学算法的颠覆性,他以某家厂商的汽车CPU举例。如果该CPU有17个变量要优化,使用传统数学工具需要运行400万次,而Cadence的Cerebrus用AI优化算法模型,计算空间仅需要200次,在10台机器上运行,一两天内就可以得到所需的结果。

在人工智能发展的第三阶段——开辟新市场,Anirudh Devgan重点阐述了“数字孪生”技术在模拟和仿真中的巨大作用。他指出,AI可以快速生成高质量的多物理场数据,而且可以利用生成式AI为理想系统设计方案,创建数字孪生可视化效果。

他在现场展示了一个时长一分多钟的视频,展示了Cadence与英伟达在3D数字孪生可视化平台上的合作。他强调,数据中心的建设者往往由施工团队而非真正的工程团队来完成,巨大的耗电量成为环保痛点。在讲解视频的过程中,Anirudh Devgan指出,Cadence的数字孪生技术可以对数据中心的电路板、机架、气流进行建模,辅以多物理场仿真工具,可以极大地优化数据中心的能耗问题。

Anirudh Devgan还谈到,人工智能在未来的数字生物学中也可以大显身手,药物制造的模拟算法和模拟晶体管架构非常类似,Cadence通过收购药物设计软件商OpenEye,加强了企业对药物分子模拟领域的技术实力。他预计,在未来5到10年内,数字生物领域将经历巨大的变革:“我们目前对AI驱动下的新兴市场的投资将确保我们处在创新的前沿。”

最后,Anirudh Devgan博士总结:“我们所专注的计算软件,其核心业务是EDA和IP,将其扩展到系统分析和人工智能领域的这段旅程,我们期待能和各个合作伙伴一起完成。”

  • 发表于:
  • 原文链接https://page.om.qq.com/page/OtUdoWii42fgmZxWqBc_3XcQ0
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

相关快讯

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券