首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

谷歌联合 UC 伯克利推出全新生成式 AI 方法“幂等生成网络”,可单步生成逼真图像

据 IT 之家 11 月 14 日报道,谷歌近日携手加州大学伯克利分校(UC Berkeley),研发出了可取代扩散模型(Diffusion Models)的全新生成式 AI 方法“幂等生成网络(IGN)”。

包括生成对抗网络(GAN)、扩散模型(Diffusion Models)和今年 3 月 OpenAI 发布的一致性模型(Consistency Models)在内,当前主流生成式 AI 模型都是随机噪点、草图或者低分辨率或其他损坏的图像等输入,映射到与给定目标数据分布相对应的输出(通常是自然图像)来生成图像。以扩散模型为例,在训练期间学习目标数据分布,然后通过多个步骤执行“去噪”处理。

谷歌研究团队提出了名为幂等生成网络(IGN)的全新生成模型,从任何形式的输入中生成合适的图像,理想情况下只需一步即可完成。该模型可以想象为一种“全局投影仪”,将任何输入数据投射到目标数据分布上,和现有其它模型算法不同,不会限于特定的输入。

  • 发表于:
  • 原文链接https://page.om.qq.com/page/OPtMYhB2jbOsHLTZF_0G65OA0
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

相关快讯

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券