相关视频
什么是频率学派?
概率被解释为一个随机过程的许多观测的预期频率。
有一种想法是 "真实的",例如,在预测鱼的生活环境时,盐度和温度之间的相互作用有一个回归系数?什么是贝叶斯学派?
在贝叶斯方法中,概率被解释为对信念的主观衡量。
所有的变量--因变量、参数和假设都是随机变量。我们用数据来确定一个估计的确定性(可信度)。
这种盐度X温度的相互作用反映的不是绝对的,而是我们对鱼的生活环境所了解的东西(本质上是草率的)。目标
频率学派
保证正确的误差概率,同时考虑到抽样、样本大小和模型。
缺点:需要对置信区间、第一类和第二类错误进行复杂的解释。
优点:更具有内在的 "客观性 "和逻辑上的一致性。
贝叶斯学派
分析更多的信息能在多大程度上提高我们对一个系统的认识。
缺点:这都是关于信仰的问题! ...有重大影响。
优点: 更直观的解释和实施,例如,这是这个假设的概率,这是这个参数等于这个值的概率。可能更接近于人类自然地解释世界的方式。
实际应用中:为什么用贝叶斯
具有有限数据的复杂模型,例如层次模型,其中
实际的先验知识非常少
贝叶斯法则:
一些典型的贝叶斯速记法。
注意:
贝叶斯的最大问题在于确定先验分布。先验应该是什么?它有什么影响?
目标:
计算参数的后验分布:π(θ|X)。
点估计是后验的平均值。
一个可信的区间是
你可以把它解释为一个参数在这个区间内的概率 。
计算
皮埃尔-西蒙-拉普拉斯(1749-1827)(见:Sharon Bertsch McGrayne: The Theory That Would Not Die)
有些问题是可分析的,例如二项式似然-贝塔先验。
但如果你有很多参数,这是不可能完成的操作
如果你有几个参数,而且是奇数分布,你可以用数值乘以/整合先验和似然(又称网格近似)。
尽管该理论可以追溯到1700年,甚至它对推理的解释也可以追溯到19世纪初,但它一直难以更广泛地实施,直到马尔科夫链蒙特卡洛技术的发展。
MCMC
MCMC的思想是对参数值θi进行 "抽样"。
回顾一下,马尔科夫链是一个随机过程,它只取决于它的前一个状态,而且(如果是遍历的),会生成一个平稳的分布。
技巧 "是找到渐进地接近正确分布的抽样规则(MCMC算法)。
有几种这样的(相关)算法。
Metropolis-Hastings抽样
Gibbs 抽样
No U-Turn Sampling (NUTS)
Reversible Jump
一个不断发展的文献和工作体系!
Metropolis-Hastings 算法
开始:
跳到一个新的候选位置:
计算后验:
如果
如果
转到第2步
Metropolis-Hastings: 硬币例子
你抛出了5个正面。你对θ的最初 "猜测 "是
MCMC:
p.old
while(length(thetas)
theta.new
p.new
if(p.new > p.old | runif(1)
theta
p.old
}
画图:
hist(thetas\[-(1:100)\] )
curve(6*x^5 )
plot(line)
plot(line\[\[1\]\], start=10)
density(line)
levelplot(line\[\[2\]\])
acfplot(line)
logitmcmc(low~age+as.factor(race)+smoke )
plot(mcmc)
int n; //
vector\[n\] y; // Y 向量
real beta1; // slope
sigma ~ inv_gamma(0.001, 0.001);
yhat\[i\]
y ~ normal(yhat, sigma);
X
Y
sampling(stan, Data)
print(fit, digits = 2)
extract(stan.fit
alply(chains, 2, mcmc)
领取专属 10元无门槛券
私享最新 技术干货