8月14日,据科技日报报道,最近,国网电力空间技术有限公司联合华北电力大学等单位研发出了输电线路红外缺陷智能识别系统,并成功将其应用于我国主要的超特高压线路运维领域,实现了产业化应用。这是我国首次将人工智能(AI)技术规模化应用于输电线路发热检测。
传统的输电线路发热检测方式通常依赖于人工判别画面中的发热故障点(检修人员的经验和注意力等因素容易干扰他们对设备检修工作的进行,导致可能会出现遗漏的情况。此外,由于红外视频数据庞大,进行复检工作的难度极大,效率也很低下,这可能会引发绝缘子掉串等危险事件),效率较低且存在一定的安全风险。而这款红外缺陷智能识别系统利用了人工智能技术,在保证安全的前提下,实现了对输电线路发热情况的精准监测和识别,该系统只需要上传巡检红外视频,便可快速抽帧并智能识别发热缺陷,从而帮助线路运维单位及时消除线路跳闸停电的隐患。
为了实现红外缺陷隐患的智能识别,技术攻关团队采用了"最小化标注 + 阶梯式学习 + 干扰点屏蔽"的技术路线。经过精心设计,模型的识别准确率已经达到了90%以上。
以240基杆塔的红外视频为例,以前需要人工复核5个小时的工作现在只需要2个小时的时间就可以完成分析,而且整个过程中无需人工干预。目前,该系统已经在国网电力空间技术有限公司得到了成功部署应用。
该系统的成功应用,为电力系统的运维工作带来了重要的突破和创新,为防止线路事故的发生提供了强力的支持。它不仅能够大幅提升线路巡检的效率和准确性,还能够有效预防线路发热缺陷引发的安全事故,保障电网的稳定运行。
领取专属 10元无门槛券
私享最新 技术干货