说了这么多,我们来以flamingo的服务器程序的网络框架设计为例来验证上述介绍的理论。flamingo的网络框架是基于陈硕的muduo库,改成C++11的版本,并修改了一些bug。在此感谢原作者陈硕。flamingo的源码可以在这里下载:https://github.com/baloonwj/flamingo,打不开github的可以移步csdn:http://download.csdn.net/detail/analogous_love/9805797。
上文介绍的核心线程函数的while循环位于eventloop.cpp中:
poller_->poll利用epoll分离网络事件,然后接着处理分离出来的网络事件,每一个客户端socket对应一个连接,即一个TcpConnection和Channel通道对象。currentActiveChannel_->handleEvent(pollReturnTime_)根据是可读、可写、出错事件来调用对应的处理函数,这些函数都是回调函数,程序初始化阶段设置进来的:
当然,这里利用了Channel对象的“多态性”,如果是普通socket,可读事件就会调用预先设置的回调函数;但是如果是侦听socket,则调用Aceptor对象的handleRead()来接收新连接:
主循环里面的业务逻辑处理对应:
这里增加业务逻辑是增加执行任务的函数指针的,增加的任务保存在成员变量pendingFunctors_中,这个变量是一个函数指针数组(vector对象),执行的时候,调用每个函数就可以了。上面的代码先利用一个栈变量将成员变量pendingFunctors_里面的函数指针换过来,接下来对这个栈变量进行操作就可以了,这样减少了锁的粒度。因为成员变量pendingFunctors_在增加任务的时候,也会被用到,设计到多个线程操作,所以要加锁,增加任务的地方是:
而frameFunctor_就更简单了,就是通过设置一个函数指针就可以了。当然这里有个技巧性的东西,即增加任务的时候,为了能够立即执行,使用唤醒机制,通过往一个fd里面写入简单的几个字节,来唤醒epoll,使其立刻返回,因为此时没有其它的socke有事件,这样接下来就执行刚才添加的任务了。
我们看一下数据收取的逻辑:
将收到的数据放到接收缓冲区里面,将来我们来解包:
先判断接收缓冲区里面的数据是否够一个包头大小,如果够再判断够不够包头指定的包体大小,如果还是够的话,接着在Process函数里面处理该包。
再看看发送数据的逻辑:
如果剩余的数据remaining大于则调用channel_->enableWriting();开始监听可写事件,可写事件处理如下:
如果发送完数据以后调用channel_->disableWriting();移除监听可写事件。
很多读者可能一直想问,文中不是说解包数据并处理逻辑是业务代码而非网络通信的代码,你这里貌似都混在一起了,其实没有,这里实际的业务代码处理都是框架曾提供的回调函数里面处理的,具体怎么处理,由框架使用者——业务层自己定义。
总结起来,实际上就是一个线程函数里一个loop那么点事情,不信你再看我曾经工作上的一个交易系统项目代码:
再看看蘑菇街开源的TeamTalk的源码(代码下载地址:https://github.com/baloonwj/TeamTalk):
由于微信公众号文章字数的限制,本篇文章未完,下一篇是《服务器端编程心得(八)——高性能服务器架构设计总结3——以flamigo服务器代码为例》。
领取专属 10元无门槛券
私享最新 技术干货