本文将从卷积神经网络的角度讨论深度学习。在本文中,我们将使用Keras和Theano,重点关注深度学习的基本原理。本文将展示两个例子——其中一个例子使用Keras进行基本的预测分析,另外一个使用VGG进行图像分析。 我们谈论的话题其实是相当广泛和深入的,需要更多的文章进行探讨。在接下来的一些文章中,我们将会讨论医学影像中DICOM和NIFTI格式之间的不同,并且研究如何使用深度学习进行2D肺分割分析。除此之外,我们还将讨论在没有深度学习时,医学图像分析是如何进行的;以及我们现在如何使用深度学习进行医学图像分
本文主要介绍如何使用Caffe进行FCN目标检测,包括数据集准备、模型选择、训练过程、测试和结果分析。作者使用VGG16网络进行预训练,并通过FCN网络进行目标检测。实验结果表明,该方法能够有效地检测出图像中的目标物体,准确率达到了66.4%。
本文介绍了如何基于PyTorch实现自定义数据集,并使用该数据集进行Faster R-CNN目标检测。主要包括四个步骤:数据集制作、模型训练、模型验证和测试。在模型训练阶段,使用自定义数据集和预训练的VGG16模型进行训练,并采用随机数据增强和叠加训练方法。在模型验证和测试阶段,使用自定义数据集对Faster R-CNN模型进行微调,并使用测试集对模型进行测试。实验结果表明,该方法能够有效提高目标检测的准确率。
在上一篇文章《图像检索系列——利用 Python 检测图像相似度》中,我们介绍了一个在图像检索领域非常常用的算法——感知哈希算法。这是一个很简单且快速的算法,其原理在于针对每一张图片都生成一个特定的“指纹”,然后采取一种相似度的度量方式得出两张图片的近似程度。
看了pascal_voc.py代码,可以把代码的jpg拼接改成png,这样可以不做上一步.
图像识别是当今深度学习的主流应用,而Keras是入门最容易、使用最便捷的深度学习框架,所以搞图像识别,你也得强调速度,不能磨叽。本文让你在最短时间内突破五个流行网络结构,迅速达到图像识别技术前沿。
argparse 是python自带的命令行参数解析包,可以用来方便地读取命令行参数,当你的代码需要频繁地修改参数的时候,使用这个工具可以将参数和代码分离开来,让你的代码更简洁,适用范围更广。 argparse使用比较简单,常用的功能可能较快地实现出来,下面我分几个步骤,以Python3为例,逐渐递增地讲述argparse的用法。
王小新 编译整理 量子位 出品 | 公众号 QbitAI Prisma这个应用,你可能很熟悉。这是一个能将不同的绘画风格,迁移到照片中,形成不同艺术风格的图片。 今年4月,美国康奈尔大学和Adobe的
在上次的动画简介中, 我们大概了解了一些迁移学习的原理和为什么要使用迁移学习. 如果用一句话来概括迁移学习, 那务必就是:“为了偷懒, 在训练好了的模型上接着训练其他内容, 充分使用原模型的理解力”.有时候也是为了避免再次花费特别长的时间重复训练大型模型.
文件结构及意义 VGG16_model:存放训练好的VGG16模型——vgg16_weights_tf_dim_ordering_tf_kernels.h5
VGG16是由16层神经网络构成的经典模型,包括多层卷积,多层全连接层,一般我们改写的时候卷积层基本不动,全连接层从后面几层依次向前改写,因为先改参数较小的。
Windows安装官方介绍:https://gocv.io/getting-started/windows/
通过深度学习,一秒钟让你的照片高大上,这是康奈尔大学和 Adobe 的工程师合作的一个新项目,通过卷积神经网络把图片进行风格迁移。项目已开源,名字叫「Deep Photo Style Transfer」。 本文这个项目将介绍Deep Photo Styletransfer的一种纯Tensorflow实现,如果你想找到torch实现的话,地址:https://github.com/luanfujun/deep-photo-styletransfer。 这个实现支持L-BFGS-B(这是原作者所使用的)和Ada
图像分类与识别是计算机视觉中的重要任务,它可以帮助我们自动识别图像中的对象、场景或者特征。在本文中,我们将介绍图像分类与识别的基本原理和常见的实现方法,并使用Python来实现这些模型。
VGG有两种结构,分别是VGG16和VGG19,两者并没有本质上的区别,只是网络深度不一样。该网络主要工作是证明了增加网络的深度能够在一定程度上影响网络最终的性能。
图像风格迁移是一种将一幅图像的风格应用到另一幅图像上的技术,使得生成的图像既保留原始图像的内容,又具有目标图像的风格。本文将介绍如何使用Python和TensorFlow实现图像风格迁移,并提供详细的代码示例。
看了faster rcnn的tensorflow代码,关于fix_variables的作用我不是很明白,所以写了以下代码,读取了预训练模型vgg16得fc6和fc7的参数,以及faster rcnn中heat_to_tail中的fc6和fc7,将它们做了对比,发现结果不一样,说明vgg16的fc6和fc7只是初始化了faster rcnn中heat_to_tail中的fc6和fc7,之后后者被训练。
本人非专业开发者,之前也没用过云服务器,所以在实践过程会遇到一些新手才会有的困惑。简单分享一下,给同样困惑的朋友一点借鉴,大神可以略过,谢谢!
基于图像分类,在VGG16模型的基础上,训练0、90、180、270度检测的分类模型. 详细代码参考angle/predict.py文件,训练图片8000张,准确率88.23%
本节内容来源于CDA深度学习课程,由唐宇迪老师所述,主要参考论文:《Image Style Transfer Using Convolutional Neural Networks》(下载链接)
本文介绍了如何使用深度学习检测物体,并提供了相关代码和教程。主要包括以下内容:1.基于Faster R-CNN的物体检测;2.使用PyTorch实现Faster R-CNN;3.训练自己的数据集进行物体检测;4.如何优化物体检测的精度;5.使用多GPU进行训练。
有不少开发者在学习深度学习框架的时候会开源一些训练好的模型,我们可以使用这些模型来运用到我们自己的项目中。如果使用的是同一个深度学习框架,那就很方便,可以直接使用,但是如果时不同深度学习框架,我们就要对模型转换一下。下面我们就介绍如何把Caffe的模型转换成PaddlePaddle的Fluid模型。
本笔记主要分为三个部分,第一部分是论文阅读,对论文中要点进行讲解。第二部分是代码实验部分,对论文中提出的部分实验进行代码实验,包含模型训练,参数量计算,特征图可视化。第三部分是下一步工作,提出一些失败及未实现的想法,来实现不需要训练的即插即用Ghost module。
随机梯度下降是一种基于梯度的优化算法,用于在训练阶段学习网络参数。梯度通常使用反向传播算法计算。在实践中,人们使用SGD的迷你批处理版本,其中参数更新是基于批处理而不是单个示例执行的,从而提高了计算效率。许多对普通SGD的扩展都存在,包括Momentum、Adagrad、rmsprop、Adadelta或Adam。
深度学习的应用主要包括两个部分,一是通过深度学习框架训练出模型,二是利用训练出来的模型进行预测。
过去的几年里推动机器学习技术稳步发展的根本性改变之一是训练和优化机器学习模型的巨大计算力。许多技术都是很年前就已经提出,唯有近几年提升的计算力可以为现实世界的问题提供足够优质的解决方案。这些计算能力的很大一部分是通过 GPU 获取的,其针对向量的计算能力最初是为图形而设计的,但机器学习模型通常需要执行复杂的矩阵运算,因此 GPU 同样表现出了非常好的性能。
知擎者是一个商标大数据智能应用平台,以商标数据为核心,结合企业大数据、法律大数据、营销大数据等,提供基础业务处理、商标预警监测、案件智能挖掘、数据情报分析等服务,为知产服务者提效赋能。知擎者不断协助知产服务者改变传统业务处理模式,创建智慧服务新体系,拓展更多业务机会,以达到知产服务者快速盈利和品牌建设的目标。
对于希望学习算法或尝试现有框架的人来说,预训练的模型是一个很好的帮助。由于时间限制或计算资源的限制,不可能总是从头构建模型,这就是为什么存在预训练模型!
本文github源码地址: 在公众号 datadw 里 回复 图像 即可获取。 笔者将和大家分享一个结合了TensorFlow和slim库的小应用,来实现图像分类、图像标注以及图像分割的任务,围绕着slim展开,包括其理论知识和应用场景。 之前自己尝试过许多其它的库,比如Caffe、Matconvnet、Theano和Torch等。它们各有优劣,而我想要一个可靠灵活的、自带预训练模型的Python库。最近,新推出了一款名叫slim的库,slim自带了许多预训练的模型,比如ResNet、VGG、Ince
但是,后来当我想用resnet101或者152等网络时,常规的操作是不行的。以下代码会报错:
keras有着很多已经与训练好的模型供调用,因此我们可以基于这些已经训练好的模型来做特征提取或者微调,来满足我们自己的需求。
0. 写在前面: 百度开发的PaddlePaddle 作为一款开源深度学习框架,刚刚问世两年左右,虽然现在使用者数量和普及程度并不及 Caffe, TensorFlow 或者 Pytorch,但是毕竟是国产,这说明我们正在紧跟时代的浪潮,所以很有必要体验并且支持下百度的PaddlePaddle。这也是我写的第一篇深度学习框架体验笔记,如果大家有任何问题,也欢迎并期待大家可以和我多多交流。 百度官网上对这个框架的介绍是:PaddlePaddle (PArallel Distributed Deep Learn
pytorch中保存数据策略在长时间的深度训练中有很大的作用,我们可以通过保存训练好的权重,然后等到下次使用的时候再取出来。另外我们也可以通过迁移学习使用别人训练好的数据进行训练。达到事半功百的效果。
选自GitHub 机器之心编译 参与:蒋思源、刘晓坤 本项目对比了各深度学习框架在 CPU 上运行相同模型(VGG-16 和 MobileNet)单次迭代所需要的时间。作者提供了所有的测试代码,读者可以尝试测评以完善该结果。 项目地址:https://github.com/peisuke/DeepLearningSpeedComparison 在本项目中,作者测评了流行深度学习框架在 CPU 上的运行相同模型所需要的时间,作者采取测试的模型为 VGG-16 和 MobileNet。所有的测试代码都已经加入
在文件夹下分别建立训练目录train,验证目录validation,测试目录test,每个目录下建立dogs和cats两个目录,在dogs和cats目录下分别放入拍摄的狗和猫的图片,图片的大小可以不一样。
网上关于VGG模型的文章有很多,有介绍算法本身的,也有代码实现,但是很多代码只给出了模型的结构实现,并不包含数据准备的部分,这让人很难愉快的将代码迁移自己的任务中。为此,这篇博客接下来围绕着如何使用VGG实现自己的图像分类任务,从数据准备到实验验证。代码基于Python与TensorFlow实现,模型结构采用VGG-16,并且将很少的出现算法和理论相关的东西。
VGG在我之前的博客中已经做过详解,详情见:https://blog.csdn.net/muye_IT/article/details/123797416
AI 科技评论按,本文不是 Python 的官方风格指南。本文总结了使用 PyTorch 框架进行深入学习的一年多经验中的最佳实践。本文分享的知识主要是以研究的角度来看的,它来源于一个开元的 github 项目。
迁移学习和领域自适应是深度学习中的两个重要概念。迁移学习旨在将已在某个任务上训练好的模型应用于新的任务,而领域自适应则是调整模型以适应不同的数据分布。本文将通过一个详细的教程,介绍如何使用Python实现迁移学习和领域自适应。
补充知识:踩坑记—-large batch_size cause low var_acc
数据的标注仍然采用VOC格式的数据标注形式,如果是其他的标注形式比如COCO请自行实现相关代码。将数据最终转化为如下形式:
虽然这是一个非官方的 指南,但本文总结了一年多使用 PyTorch 框架的经验,尤其是用它开发深度学习相关工作的最优解决方案。请注意,我们分享的经验大多是从研究和实践角度出发的。
三十多年来,许多研究人员在图像识别算法和图像数据方面积累了丰富的知识。如果你对图像训练感兴趣但不知道从哪里开始,这篇文章会是一个很好的开始。这篇文章简要介绍了过去的演变,并总结了现在的一些热门话题。
场景文字识别 目标检测任务的目标是给定一张图像或是视频帧,让计算机找出其中所有目标的位置,并给出每个目标的具体类别。对于人类来说,目标检测是一个非常简单的任务。然而,计算机能够“看到”的仅有一些值为0 ~ 255的矩阵,很难解图像或是视频帧中出现了人或是物体这样的高层语义概念,也就更加难以定位目标出现在图像中哪个区域。与此同时,由于目标会出现在图像或是视频帧中的任何位置,目标的形态千变万化,图像或是视频帧的背景千差万别,诸多因素都使得目标检测对计算机来说是一个具有挑战性的问题。 【目标检测】 SSD目标
虽然这是一个非官方的 PyTorch 指南,但本文总结了一年多使用 PyTorch 框架的经验,尤其是用它开发深度学习相关工作的最优解决方案。请注意,我们分享的经验大多是从研究和实践角度出发的。
之前用 python 给 nuswide 提取了 VGG19 特征,因为文件太大,超过 .mat 限制,存成 .h5,见 [1]。现在一个 matlab 程序要读,可以用 h5disp 查看 .h5 文件内容的结构(各个 datasets),然后用 h5read 读。
来源:Deephub Imba本文约3500字,建议阅读14分钟本文文章简要介绍了研究人员在图像识别算法和图像数据方面的演变,并总结了现在的一些热门话题。 三十多年来,许多研究人员在图像识别算法和图像数据方面积累了丰富的知识。如果你对图像训练感兴趣但不知道从哪里开始,这篇文章会是一个很好的开始。这篇文章简要介绍了过去的演变,并总结了现在的一些热门话题。 ImageNet 预训练模型 迁移学习(热门话题) 使用预训练模型识别未知图像 PyTorch ImageNet 的起源 在 2000 年代初期,大多数
该库是论文「Non-stationary texture synthesis using adversarial expansions.」的官方代码。
领取专属 10元无门槛券
手把手带您无忧上云