看到一篇讲解uCLinux与Linux之间的一些差异的文章,与大家分享下。uCLinux一般用于MCU,而Linux用于MPU。
说到物联网应用的操作系统,就不能不提Linux,因为Linux系统是目前物联网设备中应用最广泛的操作系统,之前我有讲过关于Windows物联网操作系统,那么本文就来详介绍一下基于Linux的物联网操作系统。
本人的系统环境:Linux ubuntu 3.8.0-35-generic #50-Ubuntu SMP Tue Dec 3 01:25:33 UTC 2013 i686 i686 i686 GNU/Linux
在过去的十年间,大多数新型开源操作系统已从移动市场转向物联网市场。本文介绍了面向物联网的许多新型开源操作系统。我们之前的文章介绍了开源物联网框架,以及面向物联网和消费者智能家居设备的Linux和开源开发硬件。 除了介绍面向物联网的新型嵌入式Linux发行版外,我还介绍了OpenWrt等几款比较老的轻量级发行版,它们在这个领域迎来了新生。虽然Linux发行版主要针对网关和集线器,但是面向物联网的非Linux开源操作系统取得了同样迅猛的发展,它们可以在微控制器单元(MCU)上运行,通常面向物联网边缘设备。
上周鸿蒙2.0开源,想必很多人都想第一时间体验。 今天,百问网发布鸿蒙IMX6ULL烧写工具以及鸿蒙体验手册,欢迎下载体验。
(1) jffs2 JFFS文件系统最早是由瑞典Axis Communications公司基于Linux2.0的内核为嵌入式系统开发的文件系统。JFFS2是RedHat公司基于JFFS开发的闪存文件系统,最初是针对RedHat公司的嵌入式产品eCos开发的嵌入式文件系统,所以JFFS2也可以用在Linux, uCLinux中。 Jffs2: 日志闪存文件系统版本2 (Journalling Flash FileSystem v2)主要用于NOR型闪存,基于MTD驱动层,特点是:可读写的、支持数据压
skyeye安装:ubuntu12.0432 llvm2.8 skyeye1.3.3 http://blog.chinaunix.net/uid-26963688-id-3267351.html 当中有几处是错误的,改动后的不带图的步骤例如以下: Ubuntu 12.04 LTS 32bit 1G DRAM 2 cores + skyeye-1.3.3_rel.tar.gz 开发编译环境准备: 首先安装skyeye的依赖包 sudo apt-get install libgtk2.0-dev pkg-config libatk1.0-dev libpango1.0-dev libfreetype6-dev libglib2.0-dev libx11-dev binutils-dev libncurses5-dev libxpm-dev autoconf automake libtool python-dev llvm 安装步骤: 1. 解压源文件:tar xvf skyeye-1.3.3_rel.tar.gz 安装的这个版本号的skyeye并不能正确执行,主要是执行ucos4skyeye的时候会出现skyeye.conf的配置信息不对的现象。换成了 2. 配置skyeye:./configure (在解压后的目录中) 3. 编译第三方文库:make lib -j2(用两个核) 4. 编译skyeye:make -j2 5. 安装skyeye库文件:make install_lib 6. 安装skyeye:make install 7. 执行skyeye:在opt/skyeye/bin文件夹下:./skyeye_main.py 8. 測试hello world应用程序: 首先切换到/opt/skyeye/testsuite/arm_hello文件夹下 然后执行:/opt/skyeye/bin/skyeye_main.py -e arm_hello,进入skyeye命令行模式 然后执行start命令,执行arm_hello应用程序 终端将打印架构信息。同一时候探出串口窗体 终端中执行run命令。串口会不停的打印出helloworld
今天跟一个工程师聊到嵌入式实时操作系统的话题,随着嵌入式实时操作系统(RTOS)越来越多的应用以及流行,如,linux, freeRTOS, uClinux, ucOSIII,MQX,等等。有越来越多的工程师动不动一个项目就给出使用RTOS的方案,这在做设计时候是一个很大的误区和陷阱,其实有的小项目,用裸机实现可能更简单和节省成本和维护难度,调试方便。要根据项目中的实际应用选择无RTOS和有RTOS的方案,切勿人云亦云。但在一些大型复杂的项目中可以使用RTOS. 如果有license需求的在商业产
ARM7:ARMv4架构,ARM9:ARMv5架构,ARM11:ARMv6架构,ARM-Cortex 系列:ARMv7架构。 ARM7没有MMU(内存管理单元),只能叫做MCU(微控制器),不能运行诸如Linux、WinCE等这些现代的多用户多进程操作系统,因为运行这些系统需要MMU,才能给每个用户进程分配进程自己独立的地址空间。ucOS、ucLinux这些精简实时的RTOS不需要MMU,当然可以在ARM7上运行。 ARM9、ARM11,是嵌入式CPU(处理器),带有MMU,可以运行诸如Linux等多用户多进程的操作系统,应用场合也不同于ARM7。 到了ARMv7架构的时候开始以Cortex来命名,并分成Cortex-A、Cortex-R、Cortex-M三个系列。三大系列分工明确:“A”系列面向尖端的基于虚拟内存的操作系统和用户应用;“R”系列针对实时系统;“M”系列对微控制器。简单的说Cortex-A系列是用于移动领域的CPU,Cortex-R和Cortex-M系列是用于实时控制领域的MCU。 所以看上去ARM7跟Cortex-M很像,因为他们都是MCU,但确是不同代不同架构的MCU(Cortex-M比ARM7高了三代!),所以性能也有很大的差距。此外,Cortex-M系列还细分为M0、M3、M4和超低功耗的M0+,用户依据成本、性能、功耗等因素来选择芯片。 想必楼主现在肯定知道了ARM7、Cortex-M的区别,不过还是花了点时间整理在此,可以帮助后来的初学者搞明白这些基本的概念性问题。
在这里感谢网上各位大神和前辈的指导资料,在此一一谢过,本系列文章主要是以交流和学习为主,欢迎各位转载,转载请注明下出处,谢谢!
进入后,选择project或者由http//www.opencores.org/browse.cgi/by_category进入。
建立交叉开发环境 配置开发主机 移植bootloader linux内核移植 建立并烧写根文件系统到目标板 开发嵌入式应用程序 部署与配置系统 (1)建立交叉开发环境 开发主机的操作系统一般选用某一个发行版本号的linux系统,如RedHatlinux等。linux内核版本号能够依据项目的详细需求而定,如2.4内核或者2.6内核。选择定制安装或所有安装,通过网络下载对应的gcc交叉编译器进行安装(比方arm-linux-gcc,arm-uclibc-gcc等),或者安装产品厂家提供的交叉编译器。 (2)配置开发主机 配置开发主机包含在开发主机上安装linux系统,配置交叉连接工具,如串口和网络接口。 (3)建立引导装载程序bootloader 从网络上下载一些公开源码的bootloader,依据自己详细芯片进行移植改动。
嵌入式学习是一个循序渐进的过程,如果是希望向嵌入式软件方向发展的话,目前最常见的是嵌入式Linux方向,关注这个方向,我认为大概分3个阶段: 1、嵌入式linux上层应用,包括QT的GUI开发 2、嵌入式linux系统开发 3、嵌入式linux驱动开发 嵌入式目前主要面向的几个操作系统是,LINUX,WINCE、VxWorks等等 Linux是开源免费的,而且其源代码是开放的,更加适合我们学习嵌入式。 你可以尝试以下路线: (1) C语言是所有编程语言中的强者,单片机、DSP、类似ARM的种种芯片的编程都
Linux支持多种文件系统类型,包括ext2、ext3、vfat、jffs、romfs和nfs等,为了对各类文件系统进行统一管理,Linux引入了虚拟文件系统VFS(Virtual File System),为各类文件系统提供一个统一的应用编程接口。
C语言和其他高级语言不一样,它的很多操作都是直接面向内存(面向硬件)。困难的是,对于C语言,不论是数据类型、操作符、语句、函数,都或多或少、或简单或复杂地通过地址操作内存。
操作系统是物联网时代的战略制高点,今天 PC 和手机时代的操作系统霸主未必能在物联网时代延续霸业。操作系统产业的规律是,当垄断已经形成,后来者就很难颠覆,只有等待下一次产业浪潮。如今,一个全新的、充满想象空间的操作系统市场机会正在开启。
我们平时分享的µC/OS、FreeRTOS、RT-Thread、ThreadX这些都是实时操作系统(RTOS),那么有读者问:什么是分时操作系统,Linux属于实时操作系统吗?
ARM架构中的处理器核一般都没有I/O部件和模块,ARM架构处理器的I/O可通过AMBA总线来扩充。
审计固件的时候碰到了一个mips64下uClibc堆管理利用的问题,恰巧网络上关于这个的分析不是很多,于是研究了一下。并不是很全面,做个索引,若有进一步了解时继续补全。
在学习嵌入式的路上,我们可能会接触到这两个比较典型的MCU。其中最大的区别就是S3C2440能跑linux操作系统,常常作为学习嵌入式linux的硬件平台。可能大家会问既然S3C2440能跑linux操作系统,似乎比stm32厉害多了,为什么不直接去学习S3C2440呢? 下面我就大概解释一下大家遇到的困惑:
对于没有做过嵌入式编程的人, 可能不太理解交叉编译的概念, 那么什么是交叉编译?它有什么作用?
内核源码网址:http://www.kernel.org,所有来自全世界的对Linux源码的修改最终都会汇总到这个网站,由Linus领导的开源社区对其进行甄别和修改最终决定是否进入到Linux主线内核源码中。
该文介绍了交叉编译工具链的使用,包括arm-linux-gnueabi-gcc、arm-linux-gnueabihf-gcc、arm-none-eabi-gcc、arm-none-linux-gnueabi-gcc、arm-none-linux-gnueabihf-gcc、qoriq-elf-gcc等工具的使用方法。
这是我13年前创作和发表在互联网上的文章,这么多年过去了,这篇文章仍然在到处传播。现在贴回Linuxer公众号。 全文目录: C语言嵌入式系统编程修炼之道——背景篇 C语言嵌入式系统编程修炼之道——软件架构篇 1.模块划分 2.多任务还是单任务 3.单任务程序典型架构 4.中断服务程序 5.硬件驱动模块 6.C的面向对象化 总结 C语言嵌入式系统编程修炼之道——内存操作篇 1.数据指针 2.函数指针 3.数组vs.动态申请 4.关键字const 5.关键字volatile 6.CPU字长与存储器位宽不一致处
发行版及版本比较 三大家族: Fedora是基于RHEL,CentOS,Scientific Linux, 和Oracle Linux的社区版本。相比RHEL,Fedora打包了显著的更多的软件包。其中一个原因是,多样化的社区参与Fedora的建设;它不只是一家公司。在这个过程中,CentOS用于活动,演示和实验,因为它是对最终用户免费提供的,并具有比Fedora的一个更长的发布周期(通常每隔半年左右发布一个新版本)。 SUSE, SUSE Linux Enterpri
接下来需要完成任务间的同步和通信。 任务间同步,为什么需要任务间同步,比如对公共资源的访问,如果不同步,一个任务正在访问资源,另一个任务不知道这个资源正在被访问,也去访问了,这就出现问题了。还有就是任务再等待某一事件的触发,触发后才能运行。实现的一种同步方法就是信号量。何为信号量?举个简单的例子来说,就像是资源的标识,如停车位,当还有停车位时,车才可以停进来,但没有停车位时,外面的车就必须等待,等到有停车位时再进来。下面是一个信号量的简单实现,原理就是用一个全局变量代表可用的资源。当有资源时,这个变量加一,当这个变量为0时代表没有资源了,任务开始挂起,同时开始切换到其它任务。
路由器最主要的功能可以理解为实现信息的转送。因此,我们把这个过程称之为寻址过程。因为在路由器处在不同网络之间,但并不一定是信息的最终接收地址。所以在路由器中, 通常存在着一张路由表。根据传送网站传送的信息的最终地址,寻找下一转发地址,应该是哪个网络。其实深入简出的说,就如同快递公司来发送邮件。邮件并不是瞬间到达最终目的地,而是通过不同分站的分拣,不断的接近最终地址,从而实现邮件的投递过程的。路由器寻址过程也是类似原理。通过最终地址,在路由表中进行匹配,通过算法确定下一转发地址。这个地址可能是中间地址,也可能是最终的到达地址。
启动速度是嵌入式产品一个重要的性能指标,更快的启动速度会让客户有更好的使用体验,在某
当设计一个简单的应用程序时,可以不使用操作系统,但是当设计较复杂的程序时,可能就需要一个操作系统(OS)来管理、控制内存、多任务、周边资源等等。依据系统所提供的程序界面来编写应用程序,可以大大的减少应用程序员的负担。
交叉编译器是在PC上运行的编译器,但是编译后得到的二进制程序却不能在PC 上运行,而只能在开发板上运行。交叉编译器命名方式一般遵循“处理器-系统-gcc”这样的 规则,一般通过名称便可以知道交叉编译器的功能。
ClickHouse是一种高性能、分布式的列式数据库管理系统,被广泛应用于大数据领域。在使用ClickHouse进行数据存储和处理时,了解其数据类型和函数大小写敏感性是非常重要的。本文将深入探讨ClickHouse的数据类型以及函数在不同情况下的大小写敏感性。
IE9+、Firefox、Safari、Opera和Chrome均为此提供了4个属性: innerWidth 、 innerHeight 、 outerWidth 和 outerHeight 。
考虑这样一种场景:有一个主播在美国推流,国内用户观看直播,拉流速率很小,视频非常卡顿。分析发现,带宽其实并不小,只是延时比较大(大于300ms)。
1、偏移量 先讲几个偏移量属性: offsetHeight:元素在垂直方向上占用的空间大小;相当于border-top+padding-top+height+padding-bottom+border-bottom offsetWidth:元素在水平方向上占有的空间大小;相当于botder-left+padding-left+width+padding-right+border+right offsetLeft:元素的左外边框至包含元素的左内边框之间的像素距离。 offsetTop:元素的上外边框至包含元素的上内边框之间的像素距离。
首先来看顶点着色器(即vert),前几行都比较传统:使用ModelViewProjection来变换顶点,然后设置顶点颜色和纹理坐标,只是最后一步有些奇怪:
在网上搜了一下,结论非常笼统,讲IE从不讲版本,因此自己做了测试并上传结论。以下结论皆是在标准模式下测试通过的,没有测试quirk模式。
pip install moviepy -i https://pypi.tuna.tsinghua.edu.cn/simple
1.从技术层面讲,内核是硬件与软件之间的一个中间层。作用是将应用层序的请求传递给硬件,并充当底层驱动程序,对系统中的各种设备和组件进行寻址。
1978年12月5日,物理学家赫尔曼·豪泽(Hermann Hauser)和工程师Chris Curry,在英国剑桥创办了CPU公司(Cambridge Processing Unit),主要业务是为当地市场供应电子设备。
offsetWidth: width + padding + border (披着羊皮的狼)
文章推荐:http://blog.csdn.net/creasher/article/details/51353416
三大点: 1.获取元素CSS大小 2.获取元素实际大小 3.获取元素周边大小 一.获取元素CSS大小 1.通过style内联获取元素的大小 var box = document.getElementById('box');//获取元素 box.style.width;//200px、空 box.style.height;//200px、空 PS:style获取只能获取到行内style属性的CSS样式中的宽和高,如果有 获取;如果没有则返回空。 2.通过计算获取元素的大小 var style = windo
制作网页的过程中,你有时候需要知道某个元素在网页上的确切位置。 下面的教程总结了Javascript在网页定位方面的相关知识。 一、网页的大小和浏览器窗口的大小 首先,要明确两个基本概念。 一张网页的全部面积,就是它的大小。通常情况下,网页的大小由内容和CSS样式表决定。 浏览器窗口的大小,则是指在浏览器窗口中看到的那部分网页面积,又叫做viewport(视口)。 很显然,如果网页的内容能够在浏览器窗口中全部显示(也就是不出现滚动条),那么网页的大小和浏览器窗口的大小是相等的。如果不能全部显示,则滚动浏览器
第一种形式比较好理解,首先需要定义函数,但是是立即执行函数,所以不需要函数名,不加函数名的话有可能是写错代码了,所以立即执行函数的语法就是用”()”包住立即执行函数,就可以区分出错误代码和立即执行函数。之后的”()”便是函数调用。
本文实例为大家分享了python实现ftp文件传输的具体代码,供大家参考,具体内容如下
前几天在阅读源码中tcp session模块的时候,发现一个valloc相关的内存分配器。暂时还未了解具体的应用场景,今天就来简单剖析一下源码吧。
一、UDP 协议 C# UdpClient乱序接收数据包丢失的问题 Socket ReceiveBufferSize
领取专属 10元无门槛券
手把手带您无忧上云