首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

TensorFlow巨浪中的巨人:大数据领域的引领者 TensorFlow实战【上进小菜猪大数据系列】

数据预处理的目的是清洗和准备数据,以便后续的模型训练和分析。 模型构建: TensorFlow提供了丰富的API和模块,方便构建各种类型的神经网络模型。...TensorFlow提供了丰富的工具和功能,帮助我们对海量数据进行高效的处理和准备。...例如,我们可以使用tf.data.Dataset API读取和转换数据集,通过map函数应用预处理函数,使用batch函数进行批量处理,以及通过shuffle函数进行数据混洗等操作。...import tensorflow as tf # 读取数据集 dataset = tf.data.Dataset.from_tensor_slices(data) # 数据转换和处理 dataset...= dataset.map(preprocess_function) # 批量处理 dataset = dataset.batch(batch_size) # 数据混洗 dataset = dataset.shuffle

28120

猿学-Tensorflow中的数据对象Dataset

基础概念 在tensorflow的官方文档是这样介绍Dataset数据对象的: Dataset可以用来表示输入管道元素集合(张量的嵌套结构)和“逻辑计划“对这些元素的转换操作。...参数padded_shapes:嵌套结构tf.TensorShape或 tf.int64类似矢量张量的对象,表示在批处理之前应填充每个输入元素的相应组件的形状。...任何未知的尺寸(例如,tf.Dimension(None)在一个tf.TensorShape或-1类似张量的物体中)将被填充到每个批次中该尺寸的最大尺寸。...函数形式:shard( num_shards,index) 参数num_shards:表示并行运行的分片数。 参数index:表示工人索引。 14.shuffle 随机混洗数据集的元素。...具体例子 dataset = tf.data.Dataset.from_tensor_slices([1,2,3,4,5,6,7,8,9]) #随机混洗数据 dataset=dataset.shuffle

1.3K00
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    万字长文带你看尽深度学习中的各种卷积网络

    混洗分组卷积背后的思路与分组卷积(应用于 MobileNet 、ResNeXt 等网络)以及深度可分离卷积(应用于 Xception)背后的思路相关。...总的来说,混洗分组卷积包括分组卷积和通道混洗(channel shuffling)。...这样的话,每个过滤器组就仅限于学习一些特定的特征,这种属性就阻碍了训练期间信息在通道组之间流动,并且还削弱了特征表示。为了克服这一问题,我们可以应用通道混洗。...通道混洗的思路就是混合来自不同过滤器组的信息。下图中,显示了应用有 3 个过滤器组的第一个分组卷积 GConv1 后所得到的特征映射。...在将这些特征映射喂养到第二个分组卷积之前,先将每个组中的通道拆分为几个小组,然后再混合这些小组。 ? 通道混洗 经过这种混洗,我们再接着如常执行第二个分组卷积 GConv2。

    66710

    万字长文带你看尽深度学习中的各种卷积网络

    混洗分组卷积背后的思路与分组卷积(应用于 MobileNet 、ResNeXt 等网络)以及深度可分离卷积(应用于 Xception)背后的思路相关。...总的来说,混洗分组卷积包括分组卷积和通道混洗(channel shuffling)。...这样的话,每个过滤器组就仅限于学习一些特定的特征,这种属性就阻碍了训练期间信息在通道组之间流动,并且还削弱了特征表示。为了克服这一问题,我们可以应用通道混洗。...通道混洗的思路就是混合来自不同过滤器组的信息。下图中,显示了应用有 3 个过滤器组的第一个分组卷积 GConv1 后所得到的特征映射。...在将这些特征映射喂养到第二个分组卷积之前,先将每个组中的通道拆分为几个小组,然后再混合这些小组。 ? 通道混洗 经过这种混洗,我们再接着如常执行第二个分组卷积 GConv2。

    81230

    Adaptive and Robust Query Execution for Lakehouses at Scale(翻译)

    一个错误的选择可能会导致严重的性能问题甚至稳定性问题,例如,不必要地混洗大量数据或错误地将大量数据广播到所有执行器。并行度。确定最佳的并行度,包括扫描和混洗的并行度,在分布式查询处理中仍然是一个挑战。...一些查询引擎在实现DAG调度器、任务调度器、混洗、连接、聚合和排序的方式中具有这些中断器;其他可能由于设计原因而缺乏这些。Photon引擎的混洗实现就有这样的中断器,最初是为了任务调度和容错的简单性。...如图7(a)所示,这个高估导致静态优化器选择按R.a和S.a进行分区以执行混洗哈希连接,有效地消除了后续按进行的哈希聚合的混洗。...BigQuery利用了一个内存中的、阻塞的混洗实现[2]来动态调整混洗接收端的并行度和分区函数。...相比之下,第5.4节和第6.3节描述的技术是逻辑上的“合并”和“拆分”操作,不需要再次读取或写入混洗数据,因此不需要在内存中实现混洗。

    12010

    【译】A Deep-Dive into Flinks Network Stack(1)

    我们将简要介绍这些优化的结果以及Flink在吞吐量和延迟之间的权衡。 本系列中的未来博客文章将详细介绍监控和指标,调整参数和常见的反模式。...逻辑视图 Flink的网络堆栈在相互通信时为子任务提供以下逻辑视图,例如在keyBy()要求的网络混洗期间。 ?...通过缓冲区超时的低延迟:通过减少发送未完全填充的缓冲区的超时,您可能会牺牲吞吐量来延迟 我们将在下面的部分中查看吞吐量和低延迟优化,这些部分将查看网络堆栈的物理层。...对于这一部分,让我们详细说明输出和调度类型。 首先,重要的是要知道子任务输出类型和调度类型是紧密交织在一起的,只能使两者的特定组合有效。 流水线结果分区是流式输出,需要实时目标子任务才能发送数据。...2批量/流式统一完成后,这可能适用于流式作业。 此外,对于具有多个输入的子任务,调度以两种方式启动:在所有或在任何输入生成器生成记录/其完整数据集之后。

    92540

    深度学习中的12种卷积网络,万字长文一文看尽

    混洗分组卷积 12. 逐点分组卷积 0 1卷积 VS 互关联 卷积是一项广泛应用于信号处理、图像处理以及其他工程/科学领域的技术。...混洗分组卷积背后的思路与分组卷积(应用于 MobileNet 、ResNeXt 等网络)以及深度可分离卷积(应用于 Xception)背后的思路相关。...总的来说,混洗分组卷积包括分组卷积和通道混洗 (channel shuffling)。...通道混洗的思路就是混合来自不同过滤器组的信息。 下图中,显示了应用有 3 个过滤器组的第一个分组卷积 GConv1 后所得到的特征映射。...在将这些特征映射喂养到第二个分组卷积之前,先将每个组中的通道拆分为几个小组,然后再混合这些小组。 通道混洗 经过这种混洗,我们再接着如常执行第二个分组卷积 GConv2。

    1.8K20

    深度丨机器学习零基础?手把手教你用TensorFlow搭建图像识别系统(三)

    当执行实际计算时,这些将被填充训练和测试数据。 images_placeholder将每张图片批处理成一定尺寸乘以像素的大小。...但只要重复的次数够频发,所有图片被随机分到不同批次的情况会有所改善。 这一次我们要改进抽样过程。要做的是首先对训练数据集的100个图像随机混洗。...混洗之后的数据的前10个图像作为我们的第一个批次,接下来的10个图像是我们的第二批,后面的批次以此类推。 10批后,在数据集的末尾,再重复混洗过程,和开始步骤一致,依次取10张图像作为一批次。...因为它仍然是[(imageA,labelA),(imageB,labelB),...]的形式,需要先解压它以从标签中分离图像,然后填充feed_dict,字典包含用单批培训数据填充的TensorFlow...Tensorboard1以交互式可视化的方式显示Tensorboard图像 有关在“分布”和“直方图”标签的信息可以进一步了解tf.histogram_summary操作,这里不做进一步的细节分析,更多信息可在官方

    1.4K60

    卷积神经网络学习路线(十九) | 旷世科技 2017 ShuffleNetV1

    新的架构利用两个操作:逐点组卷积(pointwise group convolution)和通道混洗(channel shuffle),与现有的其他SOTA模型相比,在保证精度的同时大大降低了计算量。...具体实现的话,我们就可以对于上一层输出的通道做一个混洗操作,如下图c所示,再分为几个组,和下一层相连。 ?...我们将第一个卷积替换为逐点组卷积,再做通道混洗如图(b)。 Figure2 a是ShuffleNet Unit,主分支最后的卷积改成组卷积,为了适配和恒等映射做通道融合。...归功于逐点群卷积和通道混洗,ShuffleNet Unit可以高效的计算。相比于其他先进的单元,在相同设置下复杂度较低。例如,给定输入大小,通道数为,对应的bottleneck的通道数为。...有通道混洗和没有通道混洗 Shuffle操作是为了实现多个组之间信息交流,下表表现了有无Shuffle操作的性能差异: ?

    1K20

    谷歌大脑新算法,不折腾TPU就能加快AI训练速度

    GPU和像谷歌TPU这样的硬件加速器大大加快了神经网络的训练速度,推助AI迅速成长,在各个领域发挥超能力。 然而,硬件发展再迅速,也总有力有不逮的时候。...按照经典的训练pipeline,AI系统先读取并解码输入数据,然后对数据进行混洗,应用转换扩充数据,然后再将样本收集到批处理中,迭代更新参数以减少误差。...如果重复数据的开销可以忽略不计,并且echoing任意侧的阶段都是并行执行的,那么数据回放完成一个上游步骤和e个下游步骤的平均时间就是: ?...需要注意的是,有两个因素会影响在不同插入点处data echoing的表现: 在批处理前回放(echoing) 在批处理之前回放意味着数据是在样本级别而不是批处理级别重复和混洗的,这增加了临近批次不同的可能性...而随着批量大小的增加,data echoing相对于基线方法的改进会更加明显。 ? 摩尔定律的黄昏 ?

    43020

    卷积神经网络中的傅里叶变换:1024x1024 的傅里叶卷积

    因此如果盲目地在频域中取乘积,会将长度为 (N+M-1) 的信号压缩到长度 N。它可以被视为时域中的混叠,从而在最终结果中产生不希望的伪影。但是循环和线性卷积会共享的值,即 (N-F+1)。...下面我们进行实际操作 我们需要完成以下 6 个步骤: 填充输入图像以避免时域中的混叠 将滤波器填充到图像大小准备逐元素乘法 计算输入图像和滤波器的 2D rFFT 转换后的输入和转换后的过滤器的元素乘法...计算滤波输入的 2D 逆 rFFT 以获得循环卷积 从循环卷积重构线性卷积 1、填充输入图像 为了避免时域中的混叠效应,我们需要用至少 (F-1) 个零填充图像,其中 F 是滤波器的边长。...通过正确设置 FFT 计算的 fft_lenght 参数来填充滤波器,即 F_filter = tf.signal.rfft2d(filter, fft_length=[image_shape[-2],...image_shape[-1]]) 3、计算 2D rFFT 准备好输入信号后,可以计算填充图像和填充滤波器的 FFT: # Image shape [b,c,h,w], Filter shape [out

    1.4K30

    . | 序列到功能的深度学习框架加速工程核糖调节剂设计和优化

    2 实验方法和结果 良好和不良支点中过分表现的核苷酸 作者和Angenent-Mari共同设计了包含244,000个支点开关的数据集,包括病毒和人类基因组序列以及随机序列,其中91,534个开关在实验表征后符合定义明确的质量控制标准...为了确定LM是否已学会了支点序列的有意义表示,作者将一个支点序列的400维表示映射到具有UMAP41的降维流形上(图2c),并将其与加扰和混洗方法进行比较。...图2d显示,分类器将表现良好的支点和劣质支点分为两类,分类概率接近0.5的序列会填充决策边界,预测性分别比使用混洗和加扰的支点分类器高约3.7倍和约6.2倍,说明了序列基序顺序对于区分支点性能至关重要,...此外,根据更成熟的现成方法评估了模型。当将LM与其他常用的基于tf-idf或skip-gram词嵌入模型进行比较时,skip-gram模型比tf-idf模型的预测值平均高出1.8倍。...尽管对较小的数据集进行了训练,但相对于加扰和混洗的序列,两个模型都能够生成有意义的预测,总的来说,这些数据证明了这些体系结构在训练比预期少得多的数据时的强大功能。 ?

    57030

    为什么MobileNet及其变体如此之快?

    作者将输入和输出用线连接起来,以可视化它们之间的依赖关系。线条的数量分别粗略地表示在空间和通道上执行卷积的计算成本。 ? 例如,最常用的 3x3 的卷积,可以通过上图进行可视化。...通道混洗(Channel shuffle) 通道混洗是改变 ShuffleNet[5] 中所用通道顺序的操作(层)。这种操作是通过张量整形和转置来实现的。...这里,G 代表的是分组卷积中分组的数目,分组卷积通常与 ShuffleNet 中的通道混洗一起使用。 虽然不能用乘-加运算次数(MACs)来定义通道混洗的计算成本,但是这些计算应该是需要一些开销的。...G=2 的通道混洗的例子。没有进行卷积,只改变了通道顺序。 ? G=3 的通道混洗的例子。...这里的重要组成模块是通道混洗层,它「混洗」了分组卷积中的通道顺序。如果没有通道混洗,分组卷积的输出就无法在分组中利用,这会导致准确率的降低。

    93320

    神经网络体系搭建(四)——快速上手TensorFlow

    session是运行graph的环境,分配GPU/CPU。这是和以往程序不同的一点,它是在session中运行的,所以逻辑写在session里。...: (784, 10) Type: float32 占784x10x4=31360字节 bias Shape: (10,) Type: float32 占10x4=40字节 输入、权重和偏置项总共的内存空间需求是...你可以在 CPU 和 GPU 上训练整个数据集。 但将来你要用到的数据集可能是以 G 来衡量,甚至更多。你可以买更多的内存,但是会很贵。 和随机梯度下降结合起来也很好用。...因此每次训练对数据混洗,取一个batch,对每个batch用梯度下降求权重,因为batch是随机的,所以其实是在对每个batch做随机梯度下降。...以上内容来自822实验室神经网络知识分享 我们的822,我们的青春 欢迎所有热爱知识热爱生活的朋友和822思享实验室一起成长,吃喝玩乐,享受知识。

    79250

    如何在Python和numpy中生成随机数

    从神经网络中的权重的随机初始化,到将数据分成随机的训练和测试集,再到随机梯度下降中的训练数据集的随机混洗(random shuffling),生成随机数和利用随机性是必需掌握的技能。...伪随机性是看起来接近随机的数字样本,但是它是使用确定性的过程生成的。 使用伪随机数生成器可以混洗数据并用随机值初始化系数。这种小程序通常是一个可以调用的返回随机数的函数。...[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19] [4,18,2,8,3] 随机混洗列表 随机性可用于随机混洗列表,就像洗牌。...混洗NUMPY数组 可以使用NumPy函数shuffle()随机混洗NumPy数组。 下面的示例演示了如何对NumPy数组进行随机混洗。...,然后随机混洗并打印混洗后的数组。

    19.3K30

    Pyspark学习笔记(四)弹性分布式数据集 RDD(上)

    创建 RDD ②引用在外部存储系统中的数据集 ③创建空RDD 5、RDD并行化 6、PySpark RDD 操作 7、RDD的类型 8、混洗操作 前言 参考文献. 1、什么是 RDD - Resilient...; 第一:使用repartition(numPartitions)从所有节点混洗数据的方法,也称为完全混洗, repartition()方法是一项非常昂贵的操作,因为它会从集群中的所有节点打乱数据。...第二:使用coalesce(n)方法**从最小节点混洗数据,仅用于减少分区数**。 这是repartition()使用合并降低跨分区数据移动的优化或改进版本。...8、混洗操作 Shuffle 是 PySpark 用来在不同执行器甚至跨机器重新分配数据的机制。...PySpark Shuffle 是一项昂贵的操作,因为它涉及以下内容 ·磁盘输入/输出 ·涉及数据序列化和反序列化 ·网络输入/输出 混洗分区大小和性能 根据数据集大小,较多的内核和内存混洗可能有益或有害我们的任务

    3.9K10

    TensorFlow 2.0 的新增功能:第一、二部分

    在不同的基础媒体类型和模型架构中,此问题始终存在。 当代的解决方案是使用最大记录的大小,对较小的记录使用填充。...本章还说明了在数据的混洗,批量和预取方面使用tf.data.Dataset方法的最佳实践,并针对 TF 2.0 提供了建议。...必须对原始数据进行混洗,以确保训练,验证和测试数据分布在整个数据分布中。 另外,建议在每个周期之后对数据进行混洗。...一种是通过使用数据集对象中的tf.data.Iterator API。 TF 1.x 中有一个一次性的,可初始化的,可重新初始化的和可填充的迭代器。...数据集操作是一个在线转换过程,该过程创建数据集对象,应用转换,对数据进行混洗,然后重复进行此操作并通过预取创建一批数据; 稍后将它们输入模型。

    3.7K10

    26秒训练ResNet,用这些技巧一步步压缩时间,Jeff Dean都称赞:干得漂亮

    当然,蛮干是不行的。为了避免启动多个GPU内核导致花销变大,可以对样本组应用相同的扩增,并通过预先对数据进行混洗的方式来保持随机性。...在32×32的图像中有625个可能的8×8剪切区域,因此通过混洗数据集,将其分成625个组,每个组代表一个剪切区域,即可实现随机扩增。...如此一来,迭代24个epoch,并对其进行随机裁减、水平翻转、cutout数据扩增,以及数据混洗和批处理,只需要不到400ms。...不过这一问题可以通过对batch的子集分别进行批量归一来解决,这种方法称为“ghost”批量归一。 固定批量归一规模(43s) 批量归一规范了每个通道的均值和方差,但这取决于可学习的规模和偏差。...实际上,如果将CELU的α参数重新调整为补偿因子4,批量归一偏差的学习率和权重衰减分别为4^2和(1/4)^2,则批量归一规模就为1。

    98230
    领券