首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    BERTBERT模型压缩技术概览

    因此,讨论如何在不过多的损失BERT性能的条件下,对BERT进行模型压缩,是一个非常有现实意义的问题。 本文先介绍模型压缩的概念及常见方法;随后,对目前出现的BERT剪枝的技术做一个整体的介绍。...,这导致几乎没有BERT或者 BERT-Large 模型可直接在GPU及智能手机上应用,因此模型压缩方法对于BERT的未来的应用前景非常有价值。...下面介绍一些BERT模型压缩的工作,可作参考。 (1) BERT剪枝 去掉BERT中不必要的部分,剪枝的内容包括权重大小剪枝、注意力剪枝、网络层以及其他部分的剪枝等。...BERT模型包括输入层(嵌入层),self-attention层,feed-forward等,针对BERT系列模型的结构,可采取的剪枝策略如下: 1)减少层数 在BERT模型的应用中,我们一般取第12层的...[1] Q8BERT: Quantized 8Bit BERT [2] Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT 总结

    1.4K21

    ELECTRA:用Bert欺骗Bert

    ICLR2020 斯坦福和Google为我们提供了一种新思路,用Bert来"欺骗"Bert。今天我们来为大家介绍ELECTRA的思路。..._bert_config = training_utils.get_bert_config(config) if config.debug: self....相比于Bert Base, Small Electra的参数都进行了缩小,Big Electra和Bert large的超参数保持一致,同时训练的时间要更长一点。...:结合了Bert和Electra,Bert的预测变成了预测所有Token 实验结果如下: 可以看到Electra 15%的效果和Bert相似,因此Bert之前只学习15%的Token的做法对于输入是有很大的信息损失的...而这篇论文回归数据本身,关注我们的输入,用Bert"欺骗'Bert,想想都让人兴奋呢。那么下一次让人惊喜的创意又会是什么呢?希望大家和我一起期待。

    1.5K21
    领券