深度学习是一种新兴的技术,已经在许多领域中得到广泛的应用,如计算机视觉、自然语言处理、语音识别等。在深度学习中,深度学习框架扮演着重要的角色。Tensorflow是一种广泛使用的深度学习框架,已经成为深度学习的事实标准。Tensorflow2是Tensorflow的最新版本,它在许多方面都有所改进,并且更加易于使用。
1. 章节一:初探AI(《带你学AI与TensorFlow2实战一之深度学习初探》):(已完成)
TensorFlow是Google推出的深度学习框架,也是使用最广泛的深度学习框架。目前最新的TensorFlow版本是2.1。可能有很多同学想跃跃欲试安装TensorFlow2,不过安装完才发现,TensorFlow2与TensorFlow1的差别非常大,基本上是不兼容的。也就是说,基于TensorFlow1的代码不能直接在TensorFlow2上运行,当然,一种方法是将基于TensorFlow1的代码转换为基于TensorFlow2的代码,尽管Google提供了转换工具,但并不保证能100%转换成功,可能会有一些瑕疵,而且转换完仍然需要进行测试,才能保证原来的代码在TensorFlow2上正确运行,不仅麻烦,而且非常费时费力。所以大多数同学会采用第二种方式:在机器上同时安装TensorFlow1和TensorFlow2。这样以来,运行以前的代码,就切换回TensorFlow1,想尝鲜TensorFlow2,再切换到TensorFlow2。那么具体如何做才能达到我们的目的呢?本文将详细讲解如何通过命令行的方式和PyCharm中安装多个Python环境来运行各个版本TensorFlow程序的方法。
这里先说一下选择使用tensorflow2讲解的原因,在对比一下同类型的一个优势。由于我们这个系列的目标是学习,大家使用的都是win系统的电脑,故而这里选择tensorflow2方便得多。当前最新的版本是2.15
Keras可以看成是一种深度学习框架的高阶接口规范,它帮助用户以更简洁的形式定义和训练深度学习网络。
在上一个专栏【TF2.0深度学习实战——图像分类】中,我分享了各种经典的深度神经网络的搭建和训练过程,比如有:LeNet-5、AlexNet、VGG系列、GoogLeNet、ResNet、DenseNet等。收到了粉丝们的很多好评,表示代码非常详细,理论部分也讲解到位。在这里先感谢你们的持续关注和支持~
文章目录 tensorflow2线性模型 步骤 源代码 tensorflow2线性模型 步骤 使用 tf.keras.datasets 获得数据集并预处理 使用 tf.keras.Model 和 tf.keras.layers 构建模型 构建模型训练流程,使用 tf.keras.losses 计算损失函数,并使用 tf.keras.optimizer 优化模型 构建模型评估流程,使用 tf.keras.metrics 计算评估指标 源代码 # Data import numpy as np import
Anaconda创建虚拟环境报错:An HTTP error occurred when trying to retrieve this URL,报错截图如下。
作者 | 李扬霞 编辑 | 青暮 谷歌Ethical AI人工智能伦理研究小组前负责人玛格丽特·米切尔(Margaret Mitchell)将加入Hugging Face,开发让AI 公平的工具。 8月25日,谷歌Ethical AI人工智能伦理研究小组前负责人玛格丽特·米切尔(Margaret Mitchell)将加入人工智能创业公司Hugging Face,帮助企业开发确保其算法公平的工具。她因与他人合著的一篇重要论文引起争议而在今年2月被谷歌解雇。 1 Hugging Face有何吸引力? Huggi
DQN算法是一种深度强化学习算法(Deep Reinforcement Learning,DRL),DQN算法是深度学习(Deep Learning)与强化学习(Reinforcement learning)结合的产物,利用深度学习的感知能力与强化学习的决策能力,实现了从感知到动作的端到端(End to End)的革命性算法。DQN算法由谷歌的DeepMind团队在NIPS 2013上首次发表,并在Nature 2015上提出由两个网络组成的Nature DQN。
感谢清华大学自然语言处理实验室对预训练语言模型架构的梳理,我们将沿此脉络前行,探索预训练语言模型的前沿技术,红色框为已介绍的文章。本期的内容是结合Huggingface的Transformers代码,
坊间有传MacOs系统不适合机器(ml)学习和深度(dl)学习,这是板上钉钉的刻板印象,就好像有人说女生不适合编程一样的离谱。现而今,无论是Pytorch框架的MPS模式,还是最新的Tensorflow2框架,都已经可以在M1/M2芯片的Mac系统中毫无桎梏地使用GPU显卡设备,本次我们来分享如何在苹果MacOS系统上安装和配置Tensorflow2框架(CPU/GPU)。
2019年3月23日,CVer推文:重磅!YOLOv3最全复现代码合集(含TensorFlow/PyTorch和Keras等)
不得不相信英伟达总能给我们惊喜,老潘作为一名深度学习从业者以及游戏爱好者,对于这种与AI、GPU、并行计算相关的话题一直都是比较感兴趣。作为深度学习第一大硬件平台的英伟达,我们自然熟悉的不能再熟悉了。
安装TensorFlow2: pip install tensorflow==2.0.0-alpha0 安装TensorFlow1: pip install --upgrade tensorflow-gpu==1.11.0 若要加速,可以考虑升级pip后换成国内清华源: pip install --user --upgrade pip pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple 依次输入以下命令查看是
2、新建conda环境变量,可建多个环境在内部安装多个tensorflow版本,1.x和2.x版本功能差别太大,代码也很大区别
TensorFlow2虽然和TensorFlow1.x有较大差异,不能直接兼容。但实际上还是提供了对TensorFlow1.x的API支持
归一化技术的改进是生成对抗网络(Generative Adversarial Networks, GAN)中众多改进的一种,本文介绍常用于当前GAN中的像素归一化(Pixel normalization,或称为像素规范化)和频谱归一化(Spectral normalization,或称频谱规范化),在高清图片生成中,这两种归一化技术得到了广泛使用,最后使用Tensorflow2实现像素归一化和频谱归一化。
Tensorflow2之后,训练保存的模型也有所变化,基于Keras接口搭建的网络模型默认保存的模型是h5格式的,而之前的模型格式是pb。Tensorflow2的h5格式的模型转换成tflite格式模型非常方便。本教程就是介绍如何使用Tensorflow2的Keras接口训练分类模型并使用Tensorflow Lite部署到Android设备上。
在Anaconda官网或者在清华 Anaconda 镜像下载。根据自己电脑配置选择32位还是64位,下在最新版本。 我安装的链接:https://pan.baidu.com/s/1P9gTwLRDp9f770rK_D1clQ 提取码:1xqf
目前Python最新release版本为3.9.0,配合TensorFlow2版本使用目前常见的以Python3.6和3.7,大家根据自己的开发平台选择合适的版本下载即可
“问渠那得清如许,为有源头活水来”,通过前沿领域知识的学习,从其他研究领域得到启发,对研究问题的本质有更清晰的认识和理解,是自我提高的不竭源泉。为此,我们特别精选论文阅读笔记,开辟“源头活水”专栏,帮助你广泛而深入的阅读科研文献,敬请关注。
tensorflow是谷歌开源的人工智能库,有最完善的生态支持。是进行人工智能领域开发和科研的必备工具。本文在windows10下,借助anacondaAnaconda安装和使用,安装tensorflow2.0。
两幅图中总结了TensorFlow2的基础知识,以及常见和进阶操作,包含: 基础部分 数据类型 维度变换 数值精度 张量创建 索引和切片 进阶部分 合并和分割 数据统计 张量比较 填充复制 高级操
鉴于tensorflow目前正在更新2.0版本,博主对博客也新增了适用于2.0版本动态度转换方法,更新于 --2019//09//29
1、了解tensorflow及关键社区资源;2、能够自主训练和应用自己想要的模型(主要);3、开阔前端智能化的思考与认知;
《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第二版
门控循环单元(Gated Recurrent Unit,GRU)是 LSTM 的一种变体,将 LSTM 中遗忘门与输入门合二为一为更新门,模型比 LSTM 模型更简单。
本文介绍了图片分类在有害昆虫识别方向中的应用,来源于代码医生工作室对外输出的分析报告。
本篇概览 本篇记录了自己在Ubuntu 16.04.7 LTS系统上搭建TensorFlow2开发环境的过程,用于将来重装时的参考 硬件是2018年购买的惠普暗隐精灵3代,显卡GTX1060,已经安装了Ubuntu16 LTS桌面版 执行本篇操作前需要安装Nvidia的驱动,详情请参考《Ubuntu16安装Nvidia驱动(GTX1060显卡)》 查看驱动信息,如下图,可见CUDA版本是10.1 版本匹配 去tensorflow官网查看版本匹配关系,地址:https://tensorflow.googl
Tensorflow官方在2018年宣布,正式发布支持树莓派版本的Tensorflow,编者开始直接用:
Suaro希望使用OpenCV来实现模型加载与推演,但是没有成功,因此开了issue寻求我的帮助。
RNN 面临的较大问题是无法解决长跨度依赖问题,即后面节点相对于跨度很大的前面时间节点的信息感知能力太弱。如下图中的两句话:左上角的句子中 sky 可以由较短跨度的词预测出来,而右下角句子中的 French 与较长跨度之前的 France 有关系,即长跨度依赖,比较难预测。
我们可以直接调用官方的tensorflow的bert模型来使用bert,接下来,我们使用output_layer = model.get_sequence_output()来获得最后一层的特征,然后接下来在添加bilstm层,
《谷歌终于开源BERT代码:3 亿参数量,机器之心全面解读》,上周推送的这篇文章,全面解读基于TensorFlow实现的BERT代码。现在,PyTorch用户的福利来了:一个名为Hugging Face的团队近日公开了BERT模型的谷歌官方TensorFlow库的op-for-op PyTorch重新实现【点击阅读原文直接访问】:
这篇文章展示了使用TensorFlow 2.0的BERT [1]嵌入的简单用法。由于TensorFlow 2.0最近已发布,该模块旨在使用基于高级Keras API的简单易用的模型。在一本很长的NoteBook中描述了BERT的先前用法,该NoteBook实现了电影评论预测。在这篇文章中,将看到一个使用Keras和最新的TensorFlow和TensorFlow Hub模块的简单BERT嵌入生成器。所有代码都可以在Google Colab上找到。
项目地址:https://github.com/JuliusKunze/jaxnet
谷歌的最强NLP模型BERT发布以来,一直非常受关注,上周开源的官方TensorFlow实现在GitHub上已经收获了近6000星。
TFX即TensorFlow Extended是官方提供的部署方案(https://www.tensorflow.org/tfx)
上周,谷歌最强NLP模型BERT开源了官方TensorFlow代码和预训练模型,引起大量关注。
BERT(Bidirectional Encoder Representations from Transformers)是Google提出的一种用于自然语言处理(NLP)的预训练模型。BERT通过双向训练Transformer,能够捕捉到文本中词语的上下文信息,是NLP领域的一个里程碑。
Github上刚刚开源了一个Google BERT的PyTorch实现版本,同时包含可加载Google BERT预训练模型的脚本,感兴趣的同学可以关注:
bert的大名如雷贯耳,无论在比赛,还是实际上的应用早已普及开来。想到十方第一次跑bert模型用的框架还是paddlepaddle,那时候用自己的训练集跑bert还是比较痛苦的,不仅要看很多配置文件,预处理代码,甚至报错了都不知道怎么回事,当时十方用的是bert双塔做文本向量的语义召回。如今tf都已经更新到了2.4了,tensorflow-hub的出现更是降低了使用预训练模型的门槛,接下来带大家看下,如何花十分钟时间快速构建bert双塔召回模型。
PT-BERT 项目地址:https://github.com/huggingface/pytorch-pretrained-BERT
datawhale8月组队学习 -基于transformers的自然语言处理(NLP)入门
本文介绍最新版本的TensorFlow开发与应用,目前最新版本是TensorFlow2.5.0;首先简单介绍一下TensorFlow,然后安装TensorFlow2,最后使用TensorFlow开发。
注意:从2.3.0版本开始,转换脚本现在已成为 transformers CLI(transformers-cli)的一部分,在任何transformers)=2.3.0的都可用。以下文档反映了transformers-cli convert命令格式。
我想很多菜鸟和我一样,开始零基础学习机器学习,没办法火啊,为了钱大家都是冲呀。估计很多人开始学习ML,就一头雾水,完全不知道在说什么。因为学习模式和学习其他语言完全不同,我们知道学习其他语言的时候,第一个程序就是打印“Hello World”。
当然,实现起来是有一些tricky的,而且tokenizer并不是真正的bert的tokenizer,中文大部分不会有太大问题,英文的话实际上因为考虑BPE,所以肯定是不行的。
领取专属 10元无门槛券
手把手带您无忧上云