参考: https://www.tensorflow.org/programmers_guide/variable_scope 举例说明 TensorFlow中的变量一般就是模型的参数。...当模型复杂的时候共享变量会无比复杂。...官网给了一个case,当创建两层卷积的过滤器时,每输入一次图片就会创建一次过滤器对应的变量,但是我们希望所有图片都共享同一过滤器变量,一共有4个变量:conv1_weights, conv1_biases...通常的做法是将这些变量设置为全局变量。但是存在的问题是打破封装性,这些变量必须文档化被其他代码文件引用,一旦代码变化,调用方也可能需要变化。还有一种保证封装性的方式是将模型封装成类。...不过TensorFlow提供了Variable Scope 这种独特的机制来共享变量。
你可以在怎么使用变量中所描述的方式来创建,初始化,保存及加载单一的变量.但是当创建复杂的模块时,通常你需要共享大量变量集并且如果你还想在同一个地方初始化这所有的变量,我们又该怎么做呢.本教程就是演示如何使用...一个更高明的做法,不用调用类,而是利用TensorFlow 提供了变量作用域 机制,当构建一个视图时,很容易就可以共享命名过的变量....变量作用域实例 变量作用域机制在TensorFlow中主要由两部分组成: tf.get_variable(, , ): 通过所给的名字创建或是返回一个变量....这里有一些在TensorFlow中使用的初始化变量: tf.constant_initializer(value) 初始化一切所提供的值, tf.random_uniform_initializer(...就像你看见的一样,tf.get_variable()会检测已经存在的变量是否已经共享.如果你想共享他们,你需要像下面使用的一样,通过reuse_variables()这个方法来指定. 1with tf.variable_scope
磐创AI 专注分享原创AI技术文章 翻译 | fendouai 编辑 | 磐石 【磐创AI导读】:本文编译自tensorflow官方网站,详细介绍了Tensorflow中多GPU的使用。...目录: 介绍 记录设备状态 手动分配状态 允许GPU内存增长 在多GPU系统是使用单个GPU 使用多个 GPU 一. 介绍 在一个典型的系统中,有多个计算设备。...在 TensorFlow 中支持的设备类型包括 CPU 和 GPU。...如果要真正限制 TensorFlow 进程可用的GPU内存量,这非常有用。 五. 在多GPU系统上使用单个GPU 如果您的系统中有多个GPU,则默认情况下将选择具有最低ID的GPU。...使用多个 GPU 如果您想要在多个 GPU 上运行 TensorFlow ,则可以采用多塔式方式构建模型,其中每个塔都分配有不同的 GPU。
环境 TensorFlow 2.0 python3.6 代码位置 https://github.com/lilihongjava/leeblog_python/tree/master/TensorFlow_GPU...模型代码说明 通过最简单的线性回归例子,实现TensorFlow多卡gpu例子 def model_train(x_data, y_data): layer0 = tf.keras.layers.Dense...编译模型: optimizer=‘adam’,优化器:梯度下降法优化 loss=‘mse’, 损失函数:使用均方差判断误差 gpu多卡利用代码说明 gpu为true开启多卡gpu支持,官网地址https...://www.tensorflow.org/guide/gpu if gpu: tf.debugging.set_log_device_placement(True) # 多卡gpu支持...卡的倍数 if x_data.shape[1] % gpu_len == 0 and x_data.shape[0] % gpu_len == 0: print("执行多卡gpu") with
现在很多服务器配置都是单机上配有多个GPU卡。tensorflow默认占用全部的gpu的显存,但是只在第一块GPU上进行计算,这样对于显卡的利用率不高。 1....单机多卡一般采用同步的数据并行模式:不同gpu共享变量,不同gpu运算不同数据的loss和梯度后在cpu里平均后更新到被训练参数。...tensorflow中的GPU并行策略是(下图,全网都是这个图): 每个GPU中都存有一个模型,但共享所有需要训练的变量。...cur_grad = opt.compute_gradients(cur_loss) tower_grad.append(cur_grad) #变量共享...* gpu_nums,例如单gpu的为32,有4块gpu,则总的batchsize为32*4=128.在代码中也很清楚的显示出了tensorflow多gpu并行的原理。
今天说一下tensorflow的变量共享机制,首先为什么会有变量共享机制? 这个还是要扯一下生成对抗网络GAN,我们知道GAN由两个网络组成,一个是生成器网络G,一个是判别器网络D。...所以这里D的输入就有2个,但是这两个输入是共享D网络的参数的,简单说,也就是权重和偏置。而TensorFlow的变量共享机制,正好可以解决这个问题。...所以变量共享的目的就是为了在对网络第二次使用的时候,可以使用同一套模型参数。TF中是由Variable_scope来实现的,下面我通过几个栗子,彻底弄明白到底该怎么使用,以及使用中会出现的错误。...# 先初始化 """ tensorflow.python.framework.errors_impl....明天要说的是用TensorFlow实现Kmeans聚类,欢迎关注~ ============End============
建议先阅读TensorFlow关于GPU 的官方教程。...https://jhui.github.io/2017/03/07/TensorFlow-GPU/ 多个进程,许多GPU 这是本文的真正意义所在。...GPU分配和内存 默认情况下,Tensorflow会为模型选择第一个可用GPU,并在设备上为进程分配完整内存。不想要两个!希望工作进程共享一个模型,但是为自己的用法分配自己的GPU集部分。...共享模型非常困难,因为Tensorflow不允许在多个进程之间轻松共享图形或会话。目前正在深入了解Tensorflow,看看它是否可行并提高性能。..._build_train_op() 为了强制进程使用特定的GPU,使用环境变量CUDA_VISIBLE_DEVICES,它独立于分配工作进程的主进程。
代码比较简单: from __future__ import division, print_function, absolute_import import numpy as np import tensorflow...as tf import time # Import MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist...*tower_grads): # Note that each grad_and_vars looks like the following: # ((grad0_gpu0...we need a custom device function, to assign all variables to '/cpu:0' # Note: If GPUs are peered, '/gpu...their own computation graph for i in range(num_gpus): with tf.device(assign_to_device('/gpu
这一篇我会说Tensorflow如何数据并行多GPU处理。 如果我们用C++编写程序只能应用在单个CPU核心上,当需要并行运行在多个GPU上时,我们需要从头开始重新编写程序。...但是Tensorflow并非如此。因其具有符号性,Tensorflow可以隐藏所有这些复杂性,可轻松地将程序扩展到多个CPU和GPU。 例如在CPU上对两个向量相加示例。 ?...同样也可以在GPU上完成。 ? 但是如果我们有两块GPU并且想要同时使用它们,该怎么办呢?答案就是:将数据进行等份拆分,并使用单独GPU来处理每一份拆分数据。 ? 让我们以更一般的形式重写它。...还添加了一个变量作用域并将其重用设置为true。这确保使用相同的变量来处理两个分支。 我们来看一个更实际的例子。...注意:当用多块GPU时,模型的权重参数是被每个GPU同时共享的,所以在定义的时候我们需要使用tf.get_variable(),它和其他定义方式区别,我在之前文章里有讲解过,在这里我就不多说了。
构建多GPU代码 结构 先构建单GPU代码 写个函数multi_gpu_model(num_gpus)来生成多GPU代码,并将对象保存在collection中 feed data run 如何构建单GPU...代码 见之前博客构建TF代码 不要在单GPU代码中创建optimizer op,因为是multi gpu,所以参数更新的操作是所有的GPU计算完梯度之后,才进行更新的。...如何实现multi_gpu_model函数 def multi_gpu_model(num_gpus=1): grads = [] for i in range(num_gpus): with...tf.device("/gpu:%d"%i): with tf.name_scope("tower_%d"%i): model = Model(is_training, config...建立多GPU训练模型 3. 建立单/多GPU测试模型 4. 创建Saver对象和FileWriter对象 5.
tensorflow下设置使用某一块GPU(从0开始编号): import os os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES..."] = "1" 多GPU: num_gpus = 4 for i in range(num_gpus): with tf.device('/gpu:%d',%i): 。。。
查看机器 GPU 的信息: nvidia-smi 持续更新查看: nvidia-smi -l 其他方式如下: import os # 使用GPU0 和 GPU1 os.environ['CUDA_VISIBLE_DEVICES...'] = '0, 1' # 通过 allow_soft_placement 参数自动将无法放在 GPU 上的操作放回 CPU gpuConfig = tf.ConfigProto(allow_soft_placement...=True) # 限制一个进程使用 60% 的显存 gpuConfig.gpu_options.per_process_gpu_memory_fraction = 0.6 # 运行时需要多少再给多少...gpuConfig.gpu_options.allow_growth = True with tf.Session(config=gpuConfig) as sess: pass
TensorFlow默认会占用设备上所有的GPU以及每个GPU的所有显存;如果指定了某块GPU,也会默认一次性占用该GPU的所有显存。...可以通过以下方式解决: 1 Python代码中设置环境变量,指定GPU 本文所有代码在tensorflow 1.12.0中测试通过。...import os os.environ["CUDA_VISIBLE_DEVICES"] = "2" # 指定只是用第三块GPU 2 系统环境变量中指定GPU # 只使用第2块GPU,在demo_code.py...,机器上的第二块GPU变成”/gpu:0“,不过在运行时所有的/gpu:0的运算将被放到第二块GPU上 CUDA_VISIBLE_DEVICES=1 python demo_code.py #只使用第一块...GPU和第二块GPU CUDA_VISIBLE_DEVICES=0,1 python demo_code.py 3 动态分配GPU显存 # allow_soft_placement=True 没有GPU
tensorflow安装GPU版本主要要点 1.先通过该网站查看tensorflow和cuda和cudnn版本以及visual studio(MSVC)的对应关系。...Computing Toolkit\CUDA\v10.0下的lib,bin,include文件夹下) 5.下面添加cudnn的环境变量,先新建一个系统变量,如下图,然后在系统变量的path下进行编辑,...在安装好tensorflow-gpu后, 执行下面代码,如果打印use GPU true,则代表gpu安装完成,可以使用gpu进行训练。...import tensorflow as tf gpu_ok = tf.test.is_gpu_available() print("tf version:", tf....__version__) print("use GPU", gpu_ok) 我的环境以及最终安装完成的版本(rtx2060驱动版本451.67,cuda10.0.130,cudnn7.6.2.24,tensorflow-gpu1.15.4
0x00 前言 CPU版的TensorFlow安装还是十分简单的,也就是几条命令的时,但是GPU版的安装起来就会有不少的坑。在这里总结一下整个安装步骤,以及在安装过程中遇到的问题和解决方法。...整体梳理 安装GPU版的TensorFlow和CPU版稍微有一些区别,这里先做一个简单的梳理,后面有详细的安装过程。...添加环境变量 在官网里面需要配置环境变量。...(gpu还是cpu版本、操作系统、Python版本等)。.../storage.googleapis.com/tensorflow/linux/gpu/tensorflow-1.0.1-cp27-cp27m-linux_x86_64.whl 0x05 验证安装 这里跑一个小例子来验证一下
为tensorflow指定GPU,原因是,默认创建session时,会将所有显存占满,发现有人在用的时候,就会session不能创建而报错。...首先nvidia-smi查看显卡的编号,最左边一列,看看哪个空的 2.在终端设置使用的GPU 如果用方法一,虽然方便,但有的时候还是需要指定其他的GPU,这时可以这样,例如 CUDA_VISIBLE_DEVICES...=2 python test.py 这样就只会使用序号为2的GPU 3.在程序中指定使用的GPU import os os.environ["CUDA_VISIBLE_DEVICES"]=‘2’ 这里仅做一下记录...linux,GPU, py2.7 pip install \ -i https://pypi.tuna.tsinghua.edu.cn/simple/ \ https://mirrors.tuna.tsinghua.edu.cn.../tensorflow/linux/gpu/tensorflow_gpu-1.4.0-cp27-none-linux_x86_64.whl
TensorFlow 有两个版本:CPU 版本和 GPU 版本。GPU 版本需要 CUDA 和 cuDNN 的支持,CPU 版本不需要。如果你要安装 GPU 版本,请先确认你的显卡支持 CUDA。...我安装的是 GPU 版本,采用 pip 安装方式,所以就以 GPU 安装为例,CPU 版本只不过不需要安装 CUDA 和 cuDNN。 1....image.png 添加到环境变量 ? 添加到环境变量 5. 安装 Anaconda,因为这个集成了很多科学计算所必需的库,能够避免很多依赖问题 ?...image.png 把 Anaconda安装目录 添加到环境变量 ? image.png 6. 使用 pip 安装 tensorflow GPU版本 管理员身份打开cmd ?...image.png 输入: pip install --upgrade tensorflow-gpu -i https://pypi.tuna.tsinghua.edu.cn/simple -ihttps
安装GPU加速的tensorflow 卸载tensorflow 一: 本次安装实验环境 Ubuntu 16.04 + cuda9.0 + cudnn7.0 或 Ubuntu 16.04 + cuda8.0...那下面简单的命令就可以完成卸载了 sudo pip uninstall tensorflow_gpu sudo pip3 uninstall tensorflow_gpu 用 pip...local/cuda/lib64 ) 注意,按照网上一些版本不匹配的安装方法,这里执行后还要执行复制和删除软连接的操作,其实完全是多余的,当然,如果你不小心装错版本,是有必要修改软连接的 五:配置环境变量...我们就把cuda的环境变量配在 .bashrc 吧: sudo gedit ~/.bashrc 把下面命令粘贴到文件末尾 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH...(gpu_options=gpu_options)) 如果你显卡内存剩于挺多的,那么可能是你在配置多版本cuda时没有清空之前cuda的缓存: sudo rm -rf ~/.nv/ # 完美解决
4.4 共享变量 一般来说,当一个被传递给Spark操作(例如,Map和Reduce)的函数在一个远程集群上运行时,该函数实际上操作的是它用到的所有变量的独立副本。...这些变量会被复制到每一台机器,在远程机器上对变量的所有更新都不会传回主驱动程序。...有时,我们需要变量能够在任务中共享,或者在任务与驱动程序之间共享。 而Spark提供两种模式的共享变量:广播变量和累加器。Spark的第二个抽象便是可以在并行计算中使用的共享变量。...□广播变量:可以在内存的所有节点中被访问,用于缓存变量(只读); □累加器:只能用来做加法的变量,如计数和求和。...并对广播变量和累加器两种模式的共享变量进行了讲解,但是在此仅仅讲解了RDD的基础相关部分,对RDD在执行过程中的依赖转换,以及RDD的可选特征优先计算位置(preferred locations)和分区策略
不过原有模型是基于 Torch 实现的,现在,来自 Meta 的研究者 Divam Gupta 表示:基于 Tensorflow/Keras 实现的 Stable Diffusion 已经来了。...项目地址:https://github.com/divamgupta/stable-diffusion-tensorflow 总结来说,该项目的特点有 3 个:转换预训练模型;代码易于理解;代码量少。...Keras 的创造者 François Chollet 表示:它在 M1 MacBooPros GPU 上实现开箱即用,它还可以开箱即用地进行多 GPU 推理。...Chollet 还表示,除了GPU外,它还可以开箱即用地进行 TPU 推理:只需获取一个 TPU VM 并将 TPU strategy scope 添加到代码中。...astronaut riding a horse" 使用 python 接口: pip install git+https://github.com/fchollet/stable-diffusion-tensorflow