选自Minimaxir 作者:Max Woolf 机器之心编译 参与:乾树、李泽南 越来越多的开发者正在使用云服务来训练和运行模型,然而目前看来这种做法的成本较高。不过相比云 GPU 而言,动态分配的云 CPU 就便宜很多了。前苹果员工 Max Woolf 最近测试了云 CPU 阵列在执行 TensorFlow 任务时的效率,并得到了令人满意的结果。利用价格差使用云 CPU 代替 GPU 可以为我们节约不少使用成本。 我一直在使用 Keras 和 TensorFlow 开展一些个人深度学习项目。但是,使用
之前用的和学习的都是pytorch框架,现在要运行一个keras的代码,得安装tensorflow和keras,按一个教程,直接在pycharm里setting,点那个+很快就装好了tensorflow和keras,运行了几次发现运行特别慢,用nvidia-smi查看,发现根本没有用pgu跑,一番查找,最后发现安装的tensorflow本身是按CPU跑的,要用GPU跑,得安装tensorflow-gpu。 以下主要参考了https://blog.csdn.net/qq_38502918/article/details/108009692进行操作,成功安装了tensorflow-gpu版本的。 记录以下安装过程。 重点: CUDA的版本要与tensorflow-gpu的一定要对应,否则会出错。 注意点: 安装好tensorflow-gpu后,安装对应版本的keras版本。 https://blog.csdn.net/weixin_40109345/article/details/106730050
选自Google Brain 作者:Asim Shankar & Wolff Dobson 机器之心编译 PyTorch 的动态图一直是 TensorFlow 用户求之不得的功能,谷歌也一直试图在 TensorFlow 中实现类似的功能。最近,Google Brain 团队发布了 Eager Execution,一个由运行定义的新接口,让 TensorFlow 开发变得简单许多。在工具推出后,谷歌开发人员 Yaroslav Bulatov 对它的性能与 PyTorch 做了横向对比。 今天,我们为 Tens
1.可以去https://www.anaconda.com/distribution/(Anaconda官网)下载对应的Anaconda 2.在安装完之后添加Anaconda进电脑的环境变量 具体方法 : 我的电脑–属性–高级系统设置–环境变量–用户变量–path–添加Anconada
自TensorFlow于2015年底正式开源,距今已有一年多,不久前,TensorFlow正式版也发布了。这期间TensorFlow不断给人以惊喜,推出了分布式版本,服务框架TensorFlowServing,可视化工具TensorFlow,上层封装TF.Learn,其他语言(Go、Java、Rust、Haskell)的绑定、Windows的支持、JIT编译器XLA、动态计算图框架Fold,以及数不胜数的经典模型在TensorFlow上的实现(InceptionNet、SyntaxNet等)。在这一年多时间,TensorFlow已从初入深度学习框架大战的新星,成为了几近垄断的行业事实标准。
11月9日Google发布了第二代深度学习引擎TensorFlow,引起业内广泛关注。发布后业内人士热议的一个话题是:这个引擎能否成为Google所说的平台级产品,它的基准测试究竟怎么样? Soumith 在 Github 做基准测试,在 Google TensorFlow 发布后,Soumith 很快发布了关于 TensorFlow 的基准测试报告。 【Soumith】GoogleTensorFlow的benchmark列在了这里。 我在Imagenet Winners上运行了benchmark测试程序。
安装TensorFlow(CPU版本),使用pip install tensorflow安装,安装一切顺利,但是在跑一个简单的程序时,遇到如下情况:
在TensorFlow中,模型可以在本地的GPU和CPU中运行,用户可以指定模型运行的设备。通常,如果你的TensorFlow版本是GPU版本的,而且你的电脑上配置有符合条件的显卡,那么在不做任何配置的情况下,模型是默认运行在显卡下的。
即可查询cpu版本tensorflow目录位置,需要注意的是此处path两侧均为双下划线。
用过 tensorflow 的人都知道, tf 可以限制程序在 GPU 中的使用效率,但 pytorch 中没有这个操作。
网上有很多教程,特别是简写上的写的都还算比较详细。但我自己还是遇到了几个坑,希望对深度学习有兴趣的同学遇到跟我一样的坑,希望这份记录能帮助到你。
原题 | Surprising Sorting Tips for Data Scientists
长期以来,Mac 一直是开发人员、工程师和研究人员喜爱的平台。随着苹果上周包含新 M1芯片的 Mac 电脑更新阵容,苹果的 Mac 优化版 TensorFlow 2.4 释放了 Mac 的全部能力,在性能上有了巨大的飞跃。
作者:Slav Ivanov@blog.slavv.com 问耕 编译整理 量子位 出品 | 公众号 QbitAI Macbook这种轻薄的笔记本,是搞不了深度学习的。亚马逊P2云服务,会给堆积越来越多的账单,换个便宜的服务,训练时间又太长…… 没办法,已经十多年没用过台式机的我,只能重新着手DIY装机,搭建一套自己的深度学习系统。以下是我的系统搭建和测试过程。 硬件清单 之前,我在AWS亚马逊云服务上的花费是每月70美元(约480元人民币)。按照使用两年计算,我给这套系统的总预算是1700美元(约1165
Macbook这种轻薄的笔记本,是搞不了深度学习的。亚马逊P2云服务,会给堆积越来越多的账单,换个便宜的服务,训练时间又太长…… 没办法,已经十多年没用过台式机的我,只能重新着手DIY装机,搭建一套自
大规模数据以及大型的神经网络结合在很多机器学习的任务上带来了超凡的表现。在训练深度学习模型的时候,当数据以及参数量变大的时候计算资源是决定我们算法迭代速度的关键要素之一。
来源:量子位 作者:Slav Ivanov@blog.slavv.com 编译:问耕 本文长度为4600字,建议阅读6分钟 本文教你万元打造一个深度学习系统。 Macbook这种轻薄的笔记本,是搞不了深度学习的。亚马逊P2云服务,会给堆积越来越多的账单,换个便宜的服务,训练时间又太长…… 没办法,已经十多年没用过台式机的我,只能重新着手DIY装机,搭建一套自己的深度学习系统。以下是我的系统搭建和测试过程。 硬件清单 之前,我在AWS亚马逊云服务上的花费是每月70美元(约480元人民币)。按照使用两年计算
开源社区的支持度、上手的难易度都是重要的参考。还有人说:学术界用PyTorch,工业界用TensorFlow。
对 keras : tensorflow https://github.com/tdeboissiere/DeepLearningImplementations/tree/master/WassersteinGAN 代码进行了运行测试,及环境配置等
本文翻译自:Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2
目前我看官网主要推荐docker 方式了,那我们就用docker 方式试试。而且网上的安装教程也是docker 的居多【官方给出了一个教程】,我们也要与时俱进。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本篇文章就带领大家用最简单地方式安装TF2.0正式版本(CPU与GPU),由我来踩坑,方便大家体验正式版本的TF2.0。
【磐创AI导读】:本篇文章为大家介绍了深度学习框架Keras与Pytorch对比,希望对大家有所帮助。想要获取更多的机器学习、深度学习资源,欢迎大家点击上方蓝字关注我们的公众号:磐创AI。
分享 有问题请到留言区互动 人工智能无疑是计算机世界的前沿领域,而深度学习无疑又是人工智能的研究热点,那么现在都有哪些开源的深度学习工具,他们各自的优缺点又是什么呢?本文对Caffe、CNTK、TensorFlow、Theano和Torch等深度学习工具从网络、模型能力、接口、部署、性能、架构、生态系统、跨平台等方面做了比较。 1.网络和模型能力 Caffe Caffe可能是第一个主流的工业级深度学习工具,它开始于2013年底,具有出色的卷积神经网络实现。在计算机视觉领域Caffe依然是最流行的工具包,它有
ML是有趣的,ML是受欢迎的,ML无处不在。大多数公司要么使用TensorFlow,要么使用PyTorch,还有些老家伙喜欢Caffe。
在前面的一篇文章《TensorFlow.js 微信小程序插件开始支持 WebAssembly》中,我们谈到了 Tensorflow.js(tfjs) 的新后端 WebAssembly(WASM)。这篇文章进一步挖掘 tfjs WASM 后端的更多信息,并探讨一下 tfjs 为何要引入 WASM 后端。
(3). 安装cuda8.0, 已有的不需要安装 官网下载cuda8.0,网速慢的话
作为一名每天对着各种裸板的系统工程师,对Jetson Nano会踩到各种坑是做好了充分准备的,本着踩坑填坑的精神,在这里记录一下踩坑经历,供大家一乐。如何避开这些坑?想多了,因为以后你们即使绕开了这些坑,也会有其它的坑等着你:) 重要的是要做到人挡杀人、佛挡杀佛,遇到坑直接趟过去。
自 2012 年深度学习再度成为焦点以来,很多机器学习框架成为研究者和业界工作者的新宠。从早期的学术框架 Caffe、Theano 到如今有业界背景的大规模框架 Pytorch 和 TensorFlow,层出不穷的新成果使得跟踪当前最流行的框架变得越发困难。
文 / Khanh LeViet 和 Luiz Gustavo Martins,技术推广工程师
一般的深度学习项目,训练时为了加快速度,会使用多GPU分布式训练。但在部署推理时,为了降低成本,往往使用单个GPU机器甚至嵌入式平台(比如 NVIDIA Jetson)进行部署,部署端也要有与训练时相同的深度学习环境,如caffe,TensorFlow等。由于训练的网络模型可能会很大(比如,inception,resnet等),参数很多,而且部署端的机器性能存在差异,就会导致推理速度慢,延迟高。这对于那些高实时性的应用场合是致命的,比如自动驾驶要求实时目标检测,目标追踪等。所以为了提高部署推理的速度,出现了很多轻量级神经网络,比如squeezenet,mobilenet,shufflenet等。基本做法都是基于现有的经典模型提出一种新的模型结构,然后用这些改造过的模型重新训练,再重新部署。
作者Lukas Biewald,是CrowdFlower创始人。 量子位编译整理。 问:搭建一个深度学习系统拢共要花多少钱? 答:在树莓派上运行TensorFlow成本是39美元;在GPU驱动的亚马逊EC2节点上运行TensorFlow的成本是1美元,每小时。这些都是可行的方案。 当然要想玩得过瘾,可以自己搭建一个快速的深度学习系统,成本不到1000美元。 这也不是小数目,但这么做的好处是,一旦你有了自己的机器设备,可以运行数百个深度学习应用程序,比方增强的机器人大脑,或者搞点艺术创作。这套系统至少比M
2019年,机器学习框架之争进入了新阶段:PyTorch与TensorFlow成为最后两大玩家,PyTorch占据学术界领军地位,TensorFlow在工业界力量依然强大,两个框架都在向对方借鉴,但是都不太理想。
近年来,由于AI领域的迅猛发展,AI这一词汇已经成为一个流行语。AI曾被称为是一个书呆子和天才的领域,但由于各种库和框架的发展,使更多的人开始了他们的AI之旅。 不知道自己应该选哪个AI框架和库?看看
AiTechYun 编辑:nanan 在今年的QCon伦敦会议上,Booking.com的开发者Sahil Dua介绍了他们是如何使用Kubernetes为他们的客户推荐目的地和住宿的机器学习(ML)
因为神经网络本质上执行大量计算,所以它们在移动设备上尽可能高效地运行是很重要的。一个高效的模型能够在实时视频上获得实时结果 - 无需耗尽电池或使手机变热,就可以在其上煎鸡蛋。
大数据时代的互联网应用产生了大量的数据,这些数据就好比是石油,里面蕴含了大量知识等待被挖掘。深度学习就是挖掘数据中隐藏知识的利器,在许多领域都取得了非常成功的应用。然而,大量的数据使得模型的训练变得复杂,使用多台设备分布式训练成了必备的选择。
百度今天开源了其深度学习平台Paddle,引发了挺多人工智能领域开发者的兴趣,包括一些之前一直在Tensorflow和Caffe上练手的开发者。不过鉴于深度学习的开源平台目前并不多,作为开发者也作为热心吃瓜群众的头等大事,就是想知道——这个平台怎么样?别人怎么看这个平台?以及这个平台跟Tensorflow以及Caffe有何区别? ▎这个平台本身怎么样 Paddle本身在开源前就一直存在,始于2013年的时候,因为百度深度实验室察觉到自己在深度神经网络训练方面,伴随着计算广告、文本、图像、语音等训练数据的快速
选自fast.ai 机器之心编译 参与:蒋思源、路雪 搭建深度学习系统需要哪些硬件、软件、环境、课程和数据?本文将为我们一次解答这些问题。 深度学习初学者经常会问到这些问题:开发深度学习系统,我们需要什么样的计算机?为什么绝大多数人会推荐英伟达 GPU?对于初学者而言哪种深度学习框架是最好的?如何将深度学习应用到生产环境中去?所有这些问题都可以归结为一个——搭建深度学习系统都需要些什么?(其中包含硬件、软件、环境与数据)在本文中,让我们将这些问题一并解决。 你需要的硬件 我们要感谢游戏行业 从收益来看,视频
深度学习在各个领域实现突破的一部分原因是我们使用了更多的数据(大数据)来训练更复杂的模型(深度神经网络),并且可以利用一些高性能并行计算设备如GPU和FPGA来加速模型训练。但是有时候,模型之大或者训练数据量之多可能超出我们的想象,这个时候就需要分布式训练系统,利用分布式系统我们可以训练更加复杂的模型(单机无法装载),还可以加速我们的训练过程,这对于研究者实现模型的超参数优化是非常有意义的。2017年6月,Facebook发布了他们的论文Accurate, Large Minibatch SGD:Training ImageNet in 1 Hour,文中指出他们采用分布在32个服务器上的256块GPUs将Resnet-50模型在ImageNet数据集上的训练时间从两周缩短为1个小时。在软件层面,他们使用了很大的minibatch(8192)来训练模型,并且使学习速率正比于minibatch的大小。这意味着,采用分布式系统可以实现模型在成百个GPUs上的训练,从而大大减少训练时间,你也将有更多的机会去尝试各种各样的超参数组合。作为使用人数最多的深度学习框架,TensorFlow从version 0.8开始支持模型的分布式训练,现在的TensorFlow支持模型的多机多卡(GPUs和 CPUs)训练。在这篇文章里面,我将简单介绍分布式TensorFlow的基础知识,并通过实例来讲解如何使用分布式TensorFlow来训练模型。
来源 | The Gradient 译者 | 夕颜 出品 | AI科技大本营(ID:rgznai100)
深度学习是机器学习中的一个研究方向,它基于一种特殊的学习机制。其特点是建立一个多层学习模型,深层级将浅层级的输出作为输入,将数据层层转化,使之越来越抽象。这种分层学习思想模拟的是人脑接受外界刺激时处理信息和学习的方式。
原文链接https://indico.io/blog/python-deep-learning-frameworks-reviewed/ 麦迪逊月 - 2017年1月31日 ---- 我最近偶然发现了我在“神经网络的最佳python库”这个主题的一个旧的数据科学堆栈交换的答案,它让我深感python深度学习生态系统在过去的两年半内的快速发展。我在2014年七月推荐的一个库pylearn2,现在已经不再被积极地开发和维护,并且一大批深度学习的库已经占据它的位置。其实每一个库都有它的优势和弱点。我们已经使
AI并不是一门简单的学科,AI算法的开发和调试并没有一个统一的、集成了大量API方便调用的平台和语言,目前的人工智能开发平台仍然处于一种半蛮荒的状态。许多功能需要自己亲自去搭建和实现。 不过幸运的是,这个领域受到了足够多的重视,因此许多巨头都针对它开发了自己的平台,这其中就包括谷歌的Tensorflow。谷歌DeepMind在AI领域的造诣已经人尽皆知,其推出的这款开发语言平台也不禁引人遐想,那么,Tensorflow到底适合如何拿来做开发?能不能为你的研究或者产品带来更好的机会? 本期公开课我们邀请到了科
领取专属 10元无门槛券
手把手带您无忧上云