在之前的文章中我们提到了TensorFlow TensorFlow 队列与多线程的应用以及TensorFlow TFRecord数据集的生成与显示,通过这些操作我们可以得到自己的TFRecord文件,并从其中解析出单个的...Image和Label作为训练数据提供给网络模型使用,而在实际的网络训练过程中,往往不是使用单个数据提供给模型训练,而是使用一个数据集(mini-batch),mini-batch中的数据个数称为batch-size...那么在TensorFlow中如何实现数据的组合呢,其实就是一个函数: tf.train.batch 或者 tf.train.shuffle_batch 这两个函数都会生成一个队列,入队的数据是单个的...import os import tensorflow as tf from PIL import Image import matplotlib.pyplot as plt import numpy
训练一个神经网络的目的是啥?不就是有朝一日让它有用武之地吗?可是,在别处使用训练好的网络,得先把网络的参数(就是那些variables)保存下来,怎么保存呢?...其实,tensorflow已经给我们提供了很方便的API,来帮助我们实现训练参数的存储与读取,如果想了解详情,请看晦涩难懂的官方API,接下来我简单介绍一下我的理解。...然后怎么读取数据呢?看下面 saver = tf.train.Saver() load_path = saver.restore(sess, model_path) 和存储数据神似啊!不再赘述。...为了对数据存储和读取有更直观的认识,我自己写了两个实验小程序,下面是第一个,训练网络并存储数据,用的MNIST数据集 import tensorflow as tf import sys # load...import tensorflow as tf import sys from tensorflow.examples.tutorials.mnist import input_data mnist =
环境 TensorFlow 2.0 python3.6 代码位置 https://github.com/lilihongjava/leeblog_python/tree/master/TensorFlow_GPU...模型代码说明 通过最简单的线性回归例子,实现TensorFlow多卡gpu例子 def model_train(x_data, y_data): layer0 = tf.keras.layers.Dense...optimizer=‘adam’,优化器:梯度下降法优化 loss=‘mse’, 损失函数:使用均方差判断误差 gpu多卡利用代码说明 gpu为true开启多卡gpu支持,官网地址https://www.tensorflow.org...Dockerfile FROM tensorflow/tensorflow:2.0.0-gpu-py3 WORKDIR /app RUN pip install --upgrade setuptools
前言 对于数据量较大的时候,通过分布式训练可以加速训练。...本文简单介绍了多机(单卡/多卡不重要)情况下的分布式Tensorflow训练方法。 对于分布式训练与单机训练主要有两个不同:1. 如何开始训练;2. 训练时如何进行分工。分别会在下面两节进行介绍。...首先写两个脚本,第一个脚本长这样 import tensorflow as tf # 每台机器要做的内容(为了简化,不训练了,只print一下) c = tf.constant("Hello from...分布式训练的方式分为异步训练和同步训练。...同样是采用DNN进行MNIST数据集的分类任务: # 异步分布式训练 #coding=utf-8 import time import tensorflow as tf from tensorflow.examples.tutorials.mnist
预训练模型 3. RNN 循环神经网络 学习于:简单粗暴 TensorFlow 2 1....预训练模型 mymodel = tf.keras.applications.MobileNetV2(),可以调用 VGG16 、 VGG19 、 ResNet 、 MobileNet 等内置模型,使用预训练好的权重初始化网络...import tensorflow as tf import tensorflow_datasets as tfds num_epoch = 2 batch_size = 16 learning_rate...label: (tf.image.resize(img, (224, 224)) / 255.0, label)).shuffle(1024).batch( batch_size) # 加载预训练模型...RNN 循环神经网络 数据预处理,字符 与 idx 的相互转换映射, 字符集 获取 batch_size 个样本、每个样本的下一个字符(标签) import tensorflow as tf import
下载 2. pycharm配置python环境 安装tensorflow 1.输入清华仓库镜像 2.创建tensorflow环境 3.启动tensorflow环境 4.安装cpu版本的TensorFlow...5.测试TensorFlow Pycharm中配置TensorFlow环境 在操作之前先安装好python环境,我是安装的Anaconda,Anaconda下载安装教程可参考:https://blog.csdn.net...Anaconda创建一个python3.6的环境,环境名称为tensorflow36 ,输入下面命令: conda create -n tensorflow36 python=3.6 3.启动tensorflow...环境 在Anaconda Prompt中启动tensorflow环境: activate tensorflow 注:当不使用tensorflow时,关闭tensorflow环境,命令为:deactivate...tensorflow -i https://pypi.tuna.tsinghua.edu.cn/simple 指定tensorflow版本安装的话: pip install –upgrade –
设置神经网络参数的过程就是神经网络的训练过程。只有经过有效训练的神经网络模型才可以真正地解决分类或者回归问题使用监督学习的方式设置神经网络参数需要有一个标注好的训练数据集。...在每次迭代的开始,首先需要选取一部分训练数据,这一小部分数据叫做一个batch。然后,这个batch的样例通过前向传播算法得到神经网络模型的预测结果。...因为训练数据都是有正确答案标注的,所以可以计算出当前神经网络模型的预测答案与真实答案之间的差距。...通过tensorflow实现反向传播算法的第一步是使用tensorflow表达一个batch的数据。...因为每生成一个常量,tensorflow都会在计算图中增加一个节点。一般来说,一个神经网络的训练过程会需要几百万甚至几亿轮的迭代,这样计算图就会非常大,而且利用率很低。
很多深度神经网络模型需要加载预训练过的Vgg参数,比如说:风格迁移、目标检测、图像标注等计算机视觉中常见的任务。那么到底如何加载Vgg模型呢?Vgg文件的参数到底有何意义呢?...本文将以Vgg19为例子,详细说明Tensorflow如何加载Vgg预训练模型。...实验环境 GTX1050-ti, cuda9.0 Window10, Tensorflow 1.12 展示Vgg19构造 import tensorflow as tf import numpy...512, 512) relu5_2 conv5_3: (3, 3, 512, 512) relu5_3 conv5_4: (3, 3, 512, 512) relu5_4 那么Vgg19真实的网络结构是怎么样子的呢...:Tensorflow加载Vgg预训练模型的几个注意事项。
PyTorch 和 TensorFlow 是目前最主流的两个深度学习框架,绝大多数研究者会选择PyTorch 或者 TensorFlow 进行深度学习的入门学习。...PyTorch 选择使用动态图,动态图的设计模式更加符合人类的思考过程,方便查看、修改中间变量的值,用户可以轻松地搭建网络进行训练。...TensorFlow 提供了 TensorFlow Serving和 TensorFlow Lite,可以便捷地将训练好的模型部署到集群以及移动设备上。...不过,受限于 TensorFlow 2.0 版本后的接口变动,许多成熟的模型并不能直接在新版本的 TensorFlow 上运行。...虽然有关 TensorFlow的文档、教程很多,但是整体而言层次性不强,用户很难快速地使用 TensorFlow 完成具体的任务。
本篇介绍自然语言处理中最基础的词向量的训练。 作者&编辑 | 小Dream哥 1 语料准备 用于词向量训练的语料应该是已经分好词的语料,如下所示: ?...2 词向量训练 (1) 读取语料数据 读取数据的过程很简单,就是从压缩文件中读取上面显示的语料,得到一个列表。...首先,构造tensorflow运算图,主要包括以下几个步骤: 1.用palceholder先给训练数据占坑; 2.初始化词向量表,是一个|V|*embedding_size的矩阵,目标就是优化这个矩阵...这里留一个作业,读者可以自己试一下,从表中读取出来几个词的向量,计算出来他们的相似度,看训练出来的词向量质量如何。...至此本文介绍了如何利用tensorflow平台自己写代码,训练一份自己想要的词向量,代码在我们有三AI的github可以 https://github.com/longpeng2008/yousan.ai
其主要的思想是对于训练好的卷积神经网络,其内部一些feature map跟最终识别的对象是特征独立的,这些特征当中有一些是关于内容特征的,另外一些是关于风格特征的,于是我们可以输入两张图像,从其中一张图像上提取其内容特征...最常见的我们是用一个预先训练好的卷积神经网络,常见的就是VGG-19,其结构如下: ? 其包含16个卷积层、5个池化层、3个全链接层。...Y是随机初始化的一张图像,带入到预训练的网络中会得到内容层与风格层的输出结果 C是内容图像,带入到预训练的网络中得到内容层Target标签 S是风格图像,带入到预训练的网络中得到风格层Target标签...:, :shape[2] - 1, :]) / total_var_x) total_variation_loss = first_term * (second_term + third_term) 训练风格迁移...tf.train.AdamOptimizer(learning_rate, beta1, beta2) train_step = optimizer.minimize(loss) # 初始化参数与训练
代码比较简单: from __future__ import division, print_function, absolute_import import numpy as np import tensorflow...as tf import time # Import MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist
如果想尝试使用Google Colab上的TPU来训练模型,也是非常方便,仅需添加6行代码。...2.x import tensorflow as tf print(tf....metrics.SparseCategoricalAccuracy(),metrics.SparseTopKCategoricalAccuracy(5)]) return(model) 三,训练模型...INFO:tensorflow:Found TPU system: INFO:tensorflow:Found TPU system: INFO:tensorflow:*** Num TPU Cores...: 8 INFO:tensorflow:*** Num TPU Cores: 8 INFO:tensorflow:*** Num TPU Workers: 1 INFO:tensorflow:*** Num
[翻译] 使用 TensorFlow 进行分布式训练 目录 [翻译] 使用 TensorFlow 进行分布式训练 0x00 摘要 1. 概述 2....其他主题 5.1 设置 TF_CONFIG 环境变量 0xFF 参考 0x00 摘要 本文以下面两篇官方文档为基础来学习TensorFlow 如何进行分布式训练: https://tensorflow.google.cn...来自 TensorFlow 如果要在协调器上运行,您需要使用 ParameterServerStrategy 对象来定义训练步骤,并使用 ClusterCoordinator 将训练步骤分派给远程工作者...0xFF 参考 使用 TensorFlow 进行分布式训练 https://github.com/tensorflow/docs-l10n/blob/master/site/en-snapshot/guide.../distributed_training.ipynb Tensorflow上手4: 初探分布式训练
环境如下: macOS 10.13.2 Python 2.7 TensorFlow 1.2.0 数据集: 要训练我们当然需要训练集,这里我采用的是CelebA的人脸图像数据集,从中筛选出戴了眼镜的人脸和没戴眼镜的人脸分别一千多张也就够了...import tensorflow as tf import numpy as np import time #数据集地址 path='./' #模型保存地址 model_path='....代码将80%的图片作为训练集,剩下20%的图片作为测试集,来查看训练效果。 其余部分代码中的注释讲的很清楚了,现在可以直接在终端运行这个python文件开始训练了。...一开始会读取所有图片,然后进行训练,训练有十轮,轮数可以通过修改“n_epoch”变量来改变,但是十轮下来效果已经很好了。用mac跑半小时也就训练完了。...测试代码 inference_glass.py # -*- coding: utf-8 -*- from skimage import io,transform import tensorflow as
这里将环境建在 ~/tensorflow目录下, 执行: $ virtualenv --system-site-packages ~/tensorflow $ cd ~/tensorflow 4.然后,...我们如果想通过深度学习拟合一条直线 y = 3 * x 应该怎么做呢?咱不讲虚的先展示下代码!然后我们在逐步分析。...#coding=utf-8 import tensorflow as tf 毕竟是基于TensorFlow的,那我们肯定要导入TensorFlow滴,导入之后取个别名tf,之后用起来方便些。...x W: 我们需要训练的W,这里我们定义了一个1维的变量(其实吧,就是一个普普通通的数,直接用tf.float32也行)并将其初值赋为0 b : 我们需要训练的b,定义一个1维变量,并将其初值赋为0 y...这里我们图方便,每次迭代都直接将i作为x,3*i作为y直接当成训练数据。 我们所有通过placeholder定义的值,在训练时我们都需要通过feed_dict来传入数据。
盯住梅西:TensorFlow目标检测实战 https://baijiahao.baidu.com/s?...搭建属于自己的物体识别模型(2)——训练并使用自己的模型 http://blog.csdn.net/dy_guox/article/details/79111949 flags.DEFINE_string...API训练出自己的目标检测模型 Object Detection API提供了5种网络结构的预训练的权重,全部是用COCO数据集进行训练,这五种模型分别是SSD+mobilenet、SSD+inception_v2...5、https://www.cnblogs.com/qcloud1001/p/7677661.html 深度学习入门篇–手把手教你用 TensorFlow 训练模型 6、http://www.cnblogs.com.../evempire/p/8401352.html TensorFlow使用object detection训练自己的模型用于物体识别 (使用这个进行调参) python object_detection
# 新建测量器 m = tf.keras.metrics.Accuracy() # 写入测量器 m.update_state([0,1,1],[0,1,2]) ...
4、创建训练集、验证集、测试集 python prepro.py --vocab_size 8000 部分运行结果: trainer_interface.cc(615) LOG(INFO)...by kyubyong park. kbpark.linguist@gmail.com. https://www.github.com/kyubyong/transformer ''' import tensorflow...For example, fpath1, fpath2 means source file path and target file path, respectively. ''' import tensorflow...kbpark.linguist@gmail.com. https://www.github.com/kyubyong/transformer Transformer network ''' import tensorflow
最近在研究tensorflow的迁移学习,网上看了不少文章,奈何不是文章写得不清楚就是代码有细节不对无法运行,下面给出使用迁移学习训练自己的图像分类及预测问题全部操作和代码,希望能帮到刚入门的同学。...大家都知道TensorFlow有迁移学习模型,可以将别人训练好的模型用自己的模型上 即不修改bottleneck层之前的参数,只需要训练最后一层全连接层就可以了。...以下均在Windows下成功实现,mac用户只要修改最后脚本命令中的路径就可以 数据准备 先建立一个文件夹,就命名为tensorflow吧 首先将你的训练集分好类,将照片放在对应文件夹中,拿本例来说,你需要在...bottleneck在tensorflow主文件夹下用于保存训练数据 再建立一个空文件夹summaries用于后面使用tensorboard就ok了 训练代码 # Copyright 2015 The...img 到这里,训练样本的过程就已经成功完成了。
领取专属 10元无门槛券
手把手带您无忧上云