把存于一个库的数据分散到多个库中,把存于一个表的数据分散到多个表中。如果说读写分离是为了分散数据库读写操作压力,分库分表就是为了分散存储压力
之前的几篇文章,阿粉已经说了这个SpringBoot整合 Sharding-JDBC 实现了水平的分库分表,也是我们在日常的业务中最经常用到的,把数据进行水平分库,比如按照日期分库,按照奇偶性用户ID来水平分库,今天阿粉来说说如何使用 Sharding-JDBC 进行垂直切分表和数据库。
在实际业务中,单表数据增长较快,很容易达到数据瓶颈,比如单表百万级别数据量。当数据量继续增长时,数据的查询性能即使有索引的帮助下也不尽如意,这时可以引入数据分库分表技术。
分库分表之所以被广泛使用,因为工程相对简单,但分库分表并不仅仅是分片,还是需要考虑如何扩缩容(全量同步、增量同步、数据校验等)。
上一篇文章阿粉已经实现了数据库进行分表的操作,而且也成功了,如果有想看的,可以看一下上一天的文章,使用SpringBoot整合 Sharding-JDBC 实现了单数据库分表保存数据和查询不同表中的数据。今天我们就来实现一下分库,并且分表,然后同样的执行保存数据和查询数据的操作。
本文是《分库分表ShardingSphere5.x原理与实战》系列的第三篇文章,本文将为您介绍 ShardingSphere 的一些基础特性和架构组成,以及在 Springboot 环境下通过 JAVA编码 和 Yml配置 两种方式快速实现分库分表。
有关Sharding-JDBC介绍这里就不在多说,之前Sharding-JDBC是当当网自研的关系型数据库的水平扩展框架,现在已经捐献给Apache,具体可以查看Github,地址是
上文《快速入门分库分表中间件 Sharding-JDBC (必修课)》中介绍了 sharding-jdbc 的基础概念,还搭建了一个简单的数据分片案例,但实际开发场景中要远比这复杂的多,我们会按 SQL 中会出现的不同操作符 >、<、between and、in等,来选择对应数据分片策略。
希望大家在每天闲暇之余学习其中几道题目,日积月累,去 BAJT 面试时,一切都水到渠成。
在互联网时代,随着业务数量的暴增和应用规模的不断扩大,无论是oracle还是mysql这样子的关系型数据库,都会面临服务器CPU、磁盘IO和内存的各种瓶颈问题。基于此情况,各个业务团队迫切需要一种数据分片的方案将业务数据量存储成本分摊到成本可控的各个普通数据库服务器上,数据库切分的方案便应运而生。
上一篇文章,阿粉讲了关于分库分表是怎么进行切分的,都有什么切分方式,垂直切分和水平切分,还有就是使用什么工具进行分库分表,Sharding和Mycat我们回顾一下:
整理了下 BATJ 关于 JAVA 的面试题目,大家参考下吧,希望对大家有所帮助,可以帮大家查漏不缺。
在对诸如订单、交易、支付等实时在线业务系统的研发、维护过程中,随着业务量的快速增长,我们经常会遇到由于关系型数据库(如:MySql)单表数据量增长过大而引发的线上事故;虽然这些事故多数时候是由于不合理的慢SQL而引起的系统雪崩,但有时也会出现由于数据库热点块IO争用而引发的系统性性能下降。总之,单表数据量的无限增长总是会在这样或那样的情况下增加系统的不稳定性因素。
因为市面上已经非常不错的分库分表的资料,所以艿艿就不在尴尬的瞎哔哔一些内容。推荐阅读两个资料:
先来聊一聊Spring作为Java开发人员,大家都Spring可不陌生,简而言之,Spring框架为开发Java应用程序提供了全面的基础架构支持。它包含一些很好的功能,如依赖注入和开箱即用的模块,如: Spring JDBC 、Spring MVC 、Spring Security、 Spring AOP 、Spring ORM 、Spring Test 这些模块大家应该都用过吧,这些模块缩短应用程序的开发时间,提高了应用开发的效率 例如,在Java Web开发的早期阶段,我们需要编写大量的代码来将记录插入到数据源中。但是通过使用Spring JDBC模块的JDBCTemplate,我们可以将这操作简化为只需配置几行代码。
当我们的数据量比较大(没接触过)就会考虑一下分库分表的策略。当然分库分表又分为多种策略:
前不久作为架构师完成了某知名快消企业的一个业务中台建设。系统上线后,经历了双十一活动的流量高峰,整体运行稳定。最近有空,便将此次架构的思路,心得稍作整理在这篇博客中分享一下。不会深入每一个技术细节,而是把用到的技术、框架、工具做一个简单的回顾,作为日后的参考。
之前一篇文章中我们讲了基于Mysql8的读写分离(文后有链接),这次来说说分库分表的实现过程。
ShardingSphere实现分库分表,如何管理分布在不同数据库实例中的成千上万张分片表?
数据库分库分表除了使用中间件来代理请求分发之外,另外一种常见的方法就是在客户端层面来分库分表 —— 通过适当地包装客户端代码使得分库分表的数据库访问操作代码编写起来也很方便。本文的分库分表方案基于 MyBatis 框架,但是又不同于市面上常用的方案,它们一般都是通过编写复杂的 MyBatis 插件来重写 SQL 语句,这样的插件代码会巨复杂无比,可能最终只有插件的原作者自己可以完全吃透相关代码,给项目的维护性带来一定问题。本文的方案非常简单易懂,而且也不失使用上的便捷性。它的设计哲学来源于 Python —— Explicit is better than Implicit,也就是显式优于隐式,它不会将分库分表的过程隐藏起来。
传统的将数据集中存储至单一数据节点的解决方案,在性能、可用性和运维成本这三方面已经难于满足互联网的海量数据场景。
因为mycat本身对于数据库主从同步还是依赖的其本身机制,所以这里我们使用mysql的时候,也需要配好主从同步,另外需要建好从库的只读账号
点击上方“芋道源码”,选择“设为星标” 管她前浪,还是后浪? 能浪的浪,才是好浪! 每天 10:33 更新文章,每天掉亿点点头发... 源码精品专栏 原创 | Java 2021 超神之路,很肝~ 中文详细注释的开源项目 RPC 框架 Dubbo 源码解析 网络应用框架 Netty 源码解析 消息中间件 RocketMQ 源码解析 数据库中间件 Sharding-JDBC 和 MyCAT 源码解析 作业调度中间件 Elastic-Job 源码解析 分布式事务中间件 TCC-Transaction
说实话,这章本来不打算讲的,因为配置多数据源的网上有很多类似的教程。但是最近因为项目要用到分库分表,所以让我研究一下看怎么实现。我想着上一篇博客讲了多环境的配置,不同的环境调用不同的数据库,那接下来就将一个环境用到多个库也就讲了。所以才有了这篇文章。 我们先来看一下今天项目的项目结构,在上篇博客的基础上进行了一定的增改,主要是增加了一个 config 文件,在dao 中分了两个子包mapper1 和mapper2 将原先的UserMapper 移入到了 mapper1 中。好了,开始正文
一般来说电商的日订单都是百千万级甚至是亿万级别的了,小小的数据库肯定是撑不住的,这时候就要提前考虑分库分表了。
springboot实战系列暂时先更新到这边,下边是对之前springboot实战文章做一个汇总
在这篇文章中提到了一个场景,即电商的订单。我们都知道订单表有三大主要查询:基于订单ID查询,基于商户编号查询,基于用户ID查询。且那篇文章给出的方案是基于订单ID、商户编号、用户ID都有一份分库分表的数据。那么为什么要这么做?能否只基于某一列例如用户ID分库分表,答案肯定是不能。
数据分片是指按照某个维度将存放在单一数据库中的数据分散地存放至多个数据库或者表中以达到提升性能瓶颈以及可用性的效果。数据分片有效手段是对关系型数据库进行分库和分表。分表可以降低每个单表的数据阈值,同时还能够将分布式事务转化为本地事务的。分库可以有效的分散数据库单点的访问量。
谈到分库分表中间件时,我们自然而然的会想到 ShardingSphere-JDBC 。
大家好,这里记录,我每周读到的技术书籍、专栏、文章以及遇到的工作上的技术经历的思考,不见得都对,但开始思考总是好的。
之前有不少刚入坑 Java 的粉丝留言,想系统的学习一下分库分表相关技术,可我一直没下定决心搞,眼下赶上公司项目在使用 sharding-jdbc 对现有 MySQL 架构做分库分表的改造,所以借此机会出一系分库分表落地实践的文章,也算是自己对架构学习的一个总结。
在谈论数据库架构和数据库优化的时候,我们经常会听到“分库分表”、“分片”、“Sharding”…这样的关键词。让人感到高兴的是,这些朋友所服务的公司业务量正在(或者即将面临)高速增长,技术方面也面临着一些挑战。让人感到担忧的是,他们系统真的就需要“分库分表”了吗?“分库分表”有那么容易实践吗?为此,笔者整理了分库分表中可能遇到的一些问题,并结合以往经验介绍了对应的解决思路和建议。
我们分库分表用的非常熟。但不能为了等到系统到了200万数据,才拆。那么工作量会非常大 我们的做法是,因为有成熟方案,所以前期就分库分表了。但,为了解释服务器空间。所以把分库分表的库,用服务器虚拟出来机器安装。这样即不过多的占用服务器资源,也方便后续数据量真的上来了,好拆分。
SpringBoot现在是很多很多公司应用的后端框架,因为它搭建快,能更好、更快速的整合其他第三方。那么随着业务的不断扩展,业务量的增加,这时候就会牵扯到分库分表,虽然这个词听起来很熟悉,作为程序员也很容易理解,但是我想应该也有不少读者没接触过分库分表,今天我们不聊如何分库分表,而是聊SpringBoot如何整合多个数据源的事情。也就是如何接入不同的(多个)数据库。
随着时间和业务的发展,数据库中的数据量增长是不可控的,库和表中的数据会越来越大,随之带来的是更高的磁盘、IO、系统开销,甚至性能上的瓶颈,而一台服务的资源终究是有限的,因此需要对数据库和表进行拆分,从而更好的提供数据服务。
因为使用我们使用Sharding-JDBC Spring Boot Starter,所以还是只需要在properties配置文件配置主从库的数据源即可
分库分表的设计和实现方式,在之前的内容中总结过很多,本文基于SpringBoot3和ShardingSphere5框架实现数据分库分表的能力;
迟来的flag兑现,就在11月7号凌晨,EDG勇夺冠军,在这里还想喊一声“EDG牛逼”,作为一名忠实粉丝,曾经立下的flag,也该实现了!
其实很多人对分库分表多少都有点恐惧,其实我也是,总觉得这玩意是运维干的、数据量上来了或者sql过于复杂、一些数据分片的中间件支持的也不是很友好、配置繁琐等多种问题。
以前没有了解过麦吉太文,忘了是在哪里看到的,boss还是脉脉上有提到过这家公司,就去搜了搜,感觉还不错就尝试了一下。
一、水平分割 1、水平分库 1)、概念: 以字段为依据,按照一定策略,将一个库中的数据拆分到多个库中。 2)、结果 每个库的结构都一样;数据都不一样; 所有库的并集是全量数据; 2、水平分表 1)、概念 以字段为依据,按照一定策略,将一个表中的数据拆分到多个表中。 2)、结果 每个表的结构都一样;数据都不一样; 所有表的并集是全量数据; 二、Shard-jdbc 中间件 1、架构图
这里,我也写过两篇文章关于《SpringBoot入门建站全系列(二十四)使用Sharding-JDBC进行分库分表》和《Spring整合Sharding-JDBC分库分表详情》
一个系统最初的线上业务量并不会很大,比如说单库的数据量在百万级别以下(事实上千万级别以下都还能支撑),那么MySQL的单库即可完成任何增/删/改/查的业务操作。随着业务的发展,单个DB中保存的数据量(用户、订单、计费明细和权限规则等数据)呈现指数级增长,那么各种业务处理操作都会面临单DB的IO读写瓶颈带来的性能问题。
书接上文 《一文快速入门分库分表(必修课)》,这篇拖了好长的时间,本来计划在一周前就该写完的,结果家庭内部突然人事调整,领导层进行权利交接,随之宣布我正式当爹,紧接着家庭地位滑落至第三名,还给我分配了一个长期维护任务:带娃。看看我们的靓照,标准的小淑女一枚萌萌哒。
这个时候是一个web项目里包含了所有的模块,一个数据库里包含了所需要的所有表,这时候网站访问量增加时,首先遇到瓶颈的是应用服务器连接数,比如tomcat连接数不能无限增加,线程数上限受进程内存大小、CPU内核数等因素影响,当线程数到达一定数时候,线程上下文的切换对性能的损耗会越来越严重,响应会变慢,通过增加web应用服务器方式的横向扩展对架构影响最小,这时候架构会变成下面这样:
上一篇文章我们主要搭建了一个分库分表的脚手架。里边集成了springboot框架,和mybats-plus以及相应表的增删改查。那么接下来我们就简单体验一下分库分表的实现。
领取专属 10元无门槛券
手把手带您无忧上云