首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    人工神经网络 – Artificial Neural Network | ANN

    文章目录 百度百科版本 人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。...查看详情 维基百科版本 人工神经网络(ANN)或连接系统是由构成动物大脑的生物神经网络模糊地启发的计算系统。神经网络本身不是算法,而是许多不同机器学习算法的框架,它们协同工作并处理复杂的数据输入。...ANN基于称为人工神经元的连接单元或节点的集合,其松散地模拟生物大脑中的神经元。每个连接,如生物大脑中的突触,可以将信号从一个人工神经元传递到另一个人工神经元。...在常见的ANN实现中,人工神经元之间的连接处的信号是实数,并且每个人工神经元的输出通过其输入之和的一些非线性函数来计算。人工神经元之间的联系称为“边缘”。

    1.2K10

    Chat with Milvus #3 回顾 - ANN-Benchmarks 测试结果

    17550684a324164ea111bfe1002ccce8&dis_t=1588755865 在高维空间中快速进行最近邻搜索已成为一个越来越重要的问题,但是到目前为止,市面上还没有很多客观的比较基准,因此 Erik Bernhardsson 创建了一个 ANN...基准测试工具- ANN-Benchmarks。...这星期二的线上问答我们与参加者分享了Milvus ANN-Benchmarks 的性能测试结果, 并展开与之相关的讨论。...想深入了解测试内容与结果,我们建议观看以下当天活动的录屏, 也欢迎到我们ANN-Benchmarks 的 GitHub Repo 一探究竟:https://github.com/milvus-io/ann-benchmarks...Milvus:在 ANN-benchmarks 当中的话,刚才也提到了是有建索引的指标的,但是它这个 ANN-Benchmark 都是限定在 CPU 的场景,那它其实比较可能会有点不是特别全面,因为Milvus

    76110

    脑科学与人工神经网络ANN的发展历程

    本文深入研究了ANN的基本概念、发展背景、应用场景以及与人脑神经网络的关系。...一、引言 ANN简介 人工神经网络(Artificial Neural Networks, ANN)是模仿生物神经网络(如大脑)的结构和功能的数学模型或计算模型,用于估计或逼近那些无法用传统算法精确表示的复杂函数关系...随着计算能力的提升和学习算法的进步,尤其是1980年代反向传播算法的提出,ANN开始快速发展,并逐渐成为深度学习和人工智能研究的核心。 应用场景 ANN在多个领域展现出强大的应用潜力和实际效果。...权重调整:与神经元突触的可塑性相似,ANN在学习过程中通过调整权重来提升性能。 并行处理:大脑能同时处理大量信息,类似地,ANN也采用并行计算来提高效率。...三、ANN的研究进展 人工神经网络(ANN)的发展历程可以划分为几个重要阶段,每个阶段都有其里程碑式的技术和理论贡献。以下是这些阶段的详细描述及其典型的技术代表。

    34710

    基于 Milvus 构建的近似最近邻(ANN)搜索引擎

    最终我们基于 Milvus 搭建了 ANN 搜索引擎,实现了上述需求。...总体架构 搭建的 ANN 搜索引擎中包含以下五个角色,我们一一详细介绍五个角色的作用以及角色之间的相互关系: ANN Client ANN Client 是其他服务访问 ANN 搜索引擎的入口。...元数据管理服务 用于存储 ANN 集群的元数据,即 ANN 集群上的 SOA 版本和业务数据表名称、分片的对应关系。将此信息持久存储在数据库中,结构如下表所示: ?...ANN 集群 ANN 集群由上文提到的节点组成,每个节点只维护一份数据表数据,也存在对应的副本或者其它数据分片。...在线部分中,ANN Client 从服务注册中心和元数据(Metadata)管理服务获取到服务和数据的对应关系后,根据业务需要,向对应的 ANN 服务节点发起请求。

    1.2K20
    领券