01 DataFrame介绍 DataFrame是一种不可变的分布式数据集,这种数据集被组织成指定的列,类似于关系数据库中的表。...02 DataFrame的作用 对于Spark来说,引入DataFrame之前,Python的查询速度普遍比使用RDD的Scala查询慢(Scala要慢两倍),通常情况下这种速度的差异来源于Python...和JVM之间的通信开销。...03 创建DataFrame 上一篇中我们了解了如何创建RDD,在创建DataFrame的时候,我们可以直接基于RDD进行转换。...spark.sql("select * from swimmersJSON").collect() 05 DF和RDD的交互操作 printSchema() 该方法可以用来打印出每个列的数据类型,我们称之为打印模式
第1章 Spark SQL概述 什么是Spark SQL Spark SQL是Spark用来处理结构化数据的一个模块,它提供了2个编程抽象:DataFrame和DataSet,并且作为分布式SQL查询引擎的作用...什么是DataFrame 在Spark中,DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库中的二维表格。...DataFrame与RDD的主要区别在于,前者带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。...DataFrame 创建在Spark SQL中SparkSession是创建DataFrame和执行SQL的入口,创建DataFrame有三种方式:通过Spark的数据源进行创建;从一个存在的RDD进行转换...save ("…"):在"csv"、"orc"、"parquet"和"textFile"格式下需要传入保存数据的路径。
、官方定义和特性 DataFrame是什么 DataFrame = RDD[Row] + Schema,Row表示每行数据,抽象的,并不知道每行Row数据有多少列,弱类型 案例演示,spark-shell...load和保存save数据 4、Spark 1.6版本,SparkSQL数据结构Dataset 坊间流传,参考Flink中DataSet数据结构而来 Dataset = RDD + schema...05-[掌握]-DataFrame是什么及案例演示 在Spark中,DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库中的二维表格。...DataFrame与RDD的主要区别在于,前者带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。...{DataFrame, SparkSession} /** * 隐式调用toDF函数,将数据类型为元组的Seq和RDD集合转换为DataFrame */ object _03SparkSQLToDF
,比RDD数据结构存储更加节省空间 RDD、DataFrame和Dataset区别与联系 2、外部数据源 如何加载和保存数据,编程模块 保存数据时,保存模式 内部支持外部数据源 自定义外部数据源...中添加的新的接口,是DataFrame API的一个扩展,是Spark最新的数据抽象,结合了RDD和DataFrame的优点。...针对Dataset数据结构来说,可以简单的从如下四个要点记忆与理解: Spark 框架从最初的数据结构RDD、到SparkSQL中针对结构化数据封装的数据结构DataFrame, 最终使用Dataset...load和保存save数据 在SparkSQL模块,提供一套完成API接口,用于方便读写外部数据源的的数据(从Spark 1.4版本提供),框架本身内置外部数据源: SparkSQL提供一套通用外部数据源接口...; 由于保存DataFrame时,需要合理设置保存模式,使得将数据保存数据库时,存在一定问题的。
,Row表示每行数据,抽象的,并不知道每行Row数据有多少列,弱类型 案例演示,spark-shell命令行 Row 表示每行数据,如何获取各个列的值 RDD如何转换为DataFrame -...load和保存save数据 4、Spark 1.6版本,SparkSQL数据结构Dataset 坊间流传,参考Flink中DataSet数据结构而来 Dataset = RDD + schema...05-[掌握]-DataFrame是什么及案例演示 在Spark中,DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库中的二维表格。...DataFrame与RDD的主要区别在于,前者带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。...{DataFrame, SparkSession} /** * 隐式调用toDF函数,将数据类型为元组的Seq和RDD集合转换为DataFrame */ object _03SparkSQLToDF
基于Spark SQL的外部数据源(external data sources) API访问(装载,保存)广泛的第三方数据源。...使用R或Python的DataFrame API能获得和Scala近乎相同的性能。而使用R或Python的RDD API的性能比起Scala RDD API来有较大的性能差距。...格式的文件)创建 从通用的数据源创建 将指定位置的数据源保存为外部SQL表,并返回相应的DataFrame 从Spark SQL表创建 从一个SQL查询的结果创建 支持的主要的DataFrame操作有:...数据缓存,持久化控制:cache(),persist(),unpersist() 数据保存:saveAsParquetFile(), saveDF() (将DataFrame的内容保存到一个数据源),...RDD和DataFrame API的调用形式和Java/Scala API有些不同。
基于Spark SQL的外部数据源(external data sources) API访问(装载,保存)广泛的第三方数据源。...使用R或Python的DataFrame API能获得和Scala近乎相同的性能。而使用R或Python的RDD API的性能比起Scala RDD API来有较大的性能差距。...格式的文件)创建 从通用的数据源创建 将指定位置的数据源保存为外部SQL表,并返回相应的DataFrame 从Spark SQL表创建 从一个SQL查询的结果创建 支持的主要的DataFrame操作有:...·数据缓存,持久化控制:cache(),persist(),unpersist() 数据保存:saveAsParquetFile(), saveDF() (将DataFrame的内容保存到一个数据源)...RDD和DataFrame API的调用形式和Java/Scala API有些不同。
Spark的DataFrame是基于RDD(弹性分布式数据集)的一种高级抽象,类似关系型数据库的表格。...Spark DataFrame可看作带有模式(Schema)的RDD,而Schema则是由结构化数据类型(如字符串、整型、浮点型等)和字段名组成。...4 深入理解 Dataset是一个分布式数据集,提供RDD强类型和使用强大的lambda函数的能力,并结合了Spark SQL优化的执行引擎。...DataFrame可从各种数据源构建,如: 结构化数据文件 Hive表 外部数据库 现有RDD DataFrame API 在 Scala、Java、Python 和 R 都可用。...例如,在进行RDD和DataFrame之间的转换时,如果不导入spark.implicits.
Spark SQL 的DataFrame接口支持操作多种数据源. 一个 DataFrame类型的对象可以像 RDD 那样操作(比如各种转换), 也可以用来创建临时表. ...通用加载和保存函数 1.1 保存到HDFS上 1.1.1 通用写法 df.write.format("json").save("路径") 1.定义一个DF // 把scala集合转换成DF,隐式转换不需要自己导...说明: spark.read.load 是加载数据的通用方法. df.write.save 是保存数据的通用方法. 1. 手动指定选项 也可以手动给数据源指定一些额外的选项....Parquet 格式经常在 Hadoop 生态圈中被使用,它也支持 Spark SQL 的全部数据类型。Spark SQL 提供了直接读取和存储 Parquet 格式文件的方法 1....注意: Parquet格式的文件是 Spark 默认格式的数据源.所以, 当使用通用的方式时可以直接保存和读取.而不需要使用format spark.sql.sources.default 这个配置可以修改默认数据源
Spark SQL使得用户使用他们最擅长的语言查询结构化数据,DataFrame位于Spark SQL的核心,DataFrame将数据保存为行的集合,对应行中的各列都被命名,通过使用DataFrame,...较之于Hadoop,Spark的集群配置比Hadoop集群的配置更简单,运行速度更快且更容易编程。Spark使得大多数的开发人员具备了大数据和实时数据分析能力。...下载Spark并河演示如何使用交互式Shell命令行 动手实验Apache Spark的最好方式是使用交互式Shell命令行,Spark目前有Python Shell和Scala Shell两种交互式命令行...,操作完成后会返回一个新的RDD,操作完成后可以对返回的RDD的行进行计数 筛选出包括Spark关键字的RDD然后进行行计数 val linesWithSpark = textFile.filter(line...然后,我们可以将所有包含Spark关键字的行筛选出来,完成操作后会生成一个新的RDDlinesWithSpark: 创建一个过滤后的RDD linesWithSpark val linesWithSpark
前言 spark运行模式 常见的有 local、yarn、spark standalone cluster 国外流行 mesos 、k8s 即使使用 local 模式,spark也会默认充分利用...CPU的多核性能 spark使用RDD、DataFrame、DataSet等数据集计算时,天然支持多核计算 但是多核计算提升效率的代价是数据不能顺序计算 如何才能做到即使用spark数据集计算时又保证顺序执行...1、重新分区 .repartition(1).foreach 2、合并分区 .coalesce(1).foreach 3、转换成数组 .collect().foreach 4、设置并行度 val spark...= SparkSession.builder().config("spark.default.parallelist","1").getOrCreate() 5、设置单核 val spark = SparkSession.builder...().appName("").master("local[1]").getOrCreate() 推荐使用 repartition,coalesce 和 collect 可能会出现 oom 速度固然重要
Spark2.x学习笔记:14、 Spark SQL程序设计 14.1 RDD的局限性 RDD仅表示数据集,RDD没有元数据,也就是说没有字段语义定义。...14.2 DataFrame和Dataset (1)DataFrame 由于RDD的局限性,Spark产生了DataFrame。...我们知道Spark SQL提供了两种方式操作数据: SQL查询 DataFrame和Dataset API 既然Spark SQL提供了SQL访问方式,那为什么还需要DataFrame和Dataset的...创建DataFrame或Dataset Spark SQL支持多种数据源 在DataFrame或Dataset之上进行转换和Action Spark SQL提供了多钟转换和Action函数 返回结果...spark变量均是SparkSession对象 将RDD隐式转换为DataFrame import spark.implicits._ 步骤2:创建DataFrame或Dataset 提供了读写各种格式数据的
========== Spark SQL ========== 1、Spark SQL 是 Spark 的一个模块,可以和 RDD 进行混合编程、支持标准的数据源、可以集成和替代 Hive、可以提供 JDBC...4、DataSet 是 Spark 最新的数据抽象,Spark 的发展会逐步将 DataSet 作为主要的数据抽象,弱化 RDD 和 DataFrame。...5、type DataFrame = Dataset[Row] 6、DataFrame 和 DataSet 都有可控的内存管理机制,所有数据都保存在非堆内存上,节省了大量空间之外,还摆脱了GC的限制。...都使用了 catalyst 进行 SQL 的优化。可以使得不太会使用 RDD 的工程师写出相对高效的代码。 7、RDD 和 DataFrame 和 DataSet 之间可以进行数据转换。...4、注意:如果需要保存成一个 text 文件,那么需要 dataFrame 里面只有一列数据。
Apache Spark是一个对开发者提供完备的库和API的集群计算系统,并且支持多种语言,包括Java,Python,R和Scala。...3.1、从Spark数据源开始 DataFrame可以通过读txt,csv,json和parquet文件格式来创建。...通过使用.rdd操作,一个数据框架可被转换为RDD,也可以把Spark Dataframe转换为RDD和Pandas格式的字符串同样可行。...13.2、写并保存在文件中 任何像数据框架一样可以加载进入我们代码的数据源类型都可以被轻易转换和保存在其他类型文件中,包括.parquet和.json。...请访问Apache Spark doc寻求更多保存、加载、写函数的细节。
学习感悟 (1)学习一定要敲,感觉很简单,但是也要敲一敲,不要眼高手低 (2)一定要懂函数式编程,一定,一定 (3)shell中的方法在scala写的项目中也会有对应的方法 (4)sc和spark是程序的入口...") 从其他RDD转换 常用的Transformation和Action(Shell) map(func):返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成 scala> var...)) scala> rdd5.sample(false,0.2,3).collect takeSample:和 Sample 的区别是:takeSample 返回的是最终的结果集合。...(n):返回前几个的排序 saveAsTextFile(path):将数据集的元素以 textfile 的形式保存 到 HDFS 文件系统或者其他支持的文件 系统,对于每个元素,Spark 将会调用 toString.../bin/spark-shell 读取数据,创建DataFrame 我的hdfs上/cbeann/person.json { "name": "王小二", "age": 15} { "name"
从2.0开始, SparkSession是 Spark 最新的 SQL 查询起始点,实质上是SQLContext和HiveContext的组合,所以在SQLContext和HiveContext上可用的...有了 SparkSession 之后, 通过 SparkSession有 3 种方式来创建DataFrame: 通过 Spark 的数据源创建 通过已知的 RDD 来创建 通过查询一个 Hive 表来创建...通过 Spark 数据源创建 1. 查看Spark数据源进行创建的文件格式 ? 2....| |null| 1| | 30| 1| +----+-----+ 2.3 RDD 和 DataFrame 的交互 1....从 DataFrame到RDD 直接调用DataFrame的rdd方法就完成了从转换. scala> val df = spark.read.json("/opt/module/spark-local/
与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。...DataFrame 可以简单的理解DataFrame为RDD+schema元信息 在Spark中,DataFrame是一种以RDD为基础的分布式数据集,类似传统数据库的二维表格 DataFrame带有schema...元信息,DataFrame所表示的数据集每一列都有名称和类型,DataFrame可以从很多数据源构建对象,如已存在的RDD、结构化文件、外部数据库、Hive表。...RDD可以把内部元素当成java对象,DataFrame内部是一个个Row对象,表示一行行数据 左侧的RDD[Person]虽然以Person为类型参数,但Spark框架本身不了解Person类的内部结构...得到DataFrame类型的返回结果。 filter:根据字段进行筛选 得到DataFrame类型的返回结果。
SparkSQL支持查询原生的RDD。 RDD是Spark平台的核心概念,是Spark能够高效的处理大数据的各种场景的基础。 能够在Scala中写SQL语句。...支持简单的SQL语法检查,能够在Scala中写Hive语句访问Hive数据,并将结果取回作为RDD使用。 ...2、Spark on Hive和Hive on Spark Spark on Hive: Hive只作为储存角色,Spark负责sql解析优化,执行。...与RDD类似,然而DataFrame更像传统数据库的二维表格,除了数据以外,还掌握数据的结构信息,即schema。...同时,与Hive类似,DataFrame也支持嵌套数据类型(struct、array和map)。
不同是的他们的执行效率和执行方式。 在后期的 Spark 版本中,DataSet 会逐步取代 RDD 和 DataFrame 成为唯一的 API 接口。 ?...1.2.1 RDD RDD 弹性分布式数据集,Spark 计算的基石,为用户屏蔽了底层对数据的复杂抽象和处理,为用户提供了一组方便的数据转换与求值方法。...RDD: 1、RDD 一般和 spark mlib 同时使用 2、RDD 不支持 sparksql 操作 DataFrame: 1、与 RDD 和 DataSet 不同,DataFrame 每一行的类型固定为...() } } 第4章 Spark SQL 数据源 4.1 通用加载/保存方法 4.1.1 手动指定选项 Spark SQL 的 DataFrame 接口支持多种数据源的操作。...可以通过 SparkSession 提供的 read.load 方法用于通用加载数据,使用 write 和 save 保存数据。
上一篇博客已经为大家介绍完了SparkSQL的基本概念以及其提供的两个编程抽象:DataFrame和DataSet,本篇博客,博主要为大家介绍的是关于SparkSQL编程的内容。...SparkSession是Spark最新的SQL查询起始点,实质上是SQLContext和HiveContext的组合,所以在SQLContext和HiveContext上可用的API在SparkSession...DataFrame 2.1 创建 在Spark SQL中SparkSession是创建DataFrame和执行SQL的入口,创建DataFrame有三种方式:通过Spark的数据源进行创建;从一个存在的...全局的临时视图存在于系统数据库 global_temp中,我们必须加上库名去引用它 5)对于DataFrame创建一个全局表 scala> df.createGlobalTempView("people...= [age: bigint, name: string] 2)将DataFrame转换为RDD scala> val dfToRDD = df.rdd dfToRDD: org.apache.spark.rdd.RDD
领取专属 10元无门槛券
手把手带您无忧上云