今天将和大家一起学习具有很高知名度的SNGAN。之前提出的WGAN虽然性能优越,但是留下一个难以解决的1-Lipschitz问题,SNGAN便是解决该问题的一个优秀方案。我们将先花大量精力介绍矩阵的最大特征值、奇异值,然后给出一个简单例子来说明如何施加1-Lipschitz限制,最后一部分讲述SNGAN。
生成对抗网络(GAN)[19] 是由一对存在竞争关系的神经网络——生成器和判别器——组成的深度神经网络架构。通过交替优化两个目标函数训练该模型,这样可以让生成器 G 学会产生与真实图像类似的样本,还能让判别器 D 学会更好地甄别真假数据。这种范式潜力巨大,因为它可以学会生成任何数据分布。这种模型已经在一些计算机视觉问题上取得了一定成果,例如文本到图像的转换 [56] 和图像到图像的转换 [24,59]、超分辨率 [31] 以及逼真的自然图像生成 [25]。
今天看到这么一个论文题目“A Novel Framework for Selection of GANs for an Application ”,这名字有、6啊,好久没有出厉害的GAN的变体了吧?新颖的GAN框架?决定下载下来看!引入眼帘的是摘要:
在之前的文章中,我们介绍了 GAN 的原理以及如何评价训练好的模型。可能有小伙伴看到,怎么生成的都是单一类别的图片呢,像 CIFAR10 和 ImageNet,都包含了多种类别的图片,如果我想训练一个能够生成多种类别图片的生成对抗网络该怎么做呢?
金磊 发自 凹非寺 量子位 报道 | 公众号 QbitAI AI画的简笔画能到什么水平? 给一张美国演员Rami Malek的照片,效果是这样的。 是不是和原图很逼近了? 再来看下输入《老友记》合影的效果。 虽然人物众多,但出来的简笔画效果,依旧还是能分清剧中的人物。 如果毛发特别浓密的人物照,AI还能hold得住吗? 小姐姐“爆炸头”的边缘毛发,也算得上是完美还原了。 再近距离一些的呢?来看“霉霉”(Taylor Swift)照片的效果。 可以说是相当的细节了,把发丝的层次感、光感,以及衣物的褶
https://github.com/pfnet-research/sngan_projection cGANs with Projection Discriminator Takeru Miyat
近日,机器之心在 GitHub 上看到了一个非常有意义的项目 PyTorch-StudioGAN,它是一个 PyTorch 库,提供了条件 / 无条件图像生成的代表性生成对抗网络(GAN)的实现。据主页介绍,该项目旨在提供一个统一的现代 GAN 平台,这样机器学习领域的研究者可以快速地比较和分析新思路和新方法等。
从今天开始,我们将关注训练GAN时产生的问题,作为第一篇文章,首先从几个方面来分析一下实际训练的GAN和理论模型上的GAN不同之处以及实践中出现的问题。第一个部分将介绍最优判别器引发的梯度消失问题,第二部分使用一个例子介绍距离计算时的问题,接着第三部分将介绍优化问题的困惑以及给出模式崩溃一个简单解释,最后一部分简单谈一下参数空间的问题。
今天的这篇小文将是GAN模型理论介绍的最后一篇。有一些内容,所用数学技巧和方法非常高大上,理论结果也非常漂亮,但是完全搞明白其中的门门道道需要相当大精力和知识铺垫,况且实际运用也非常小众,但是作为模型理论里十分重要的一部分,有必要做一定程度的了解。故今天的文章将类似于“参观博物馆”的形式,只大概展示一些结果,带领大家看一看IPM框架和由此产生的各种各样的GAN。
AI ScholarWeekly是AI领域的学术专栏,致力于为你带来最新潮、最全面、最深度的AI学术概览,一网打尽每周AI学术的前沿资讯。
呜啦啦啦啦啦啦啦大家好,本周的AI Scholar Weekly栏目又和大家见面啦!
我是一个艺术家,同时也是一位开发者。艺术和软件在我的生活中曾经是两个平行的轨道,直到我发现了GANs(Generative Adversarial Networks):在一次偶然中,我尝试用Processing和计算摄影学来生成艺术,这将我所有的艺术作品都变成了模拟量。
【导读】生成对抗网络(GANs) 是一类深度生成模型,旨在以无监督方式来学习目标的分布。虽然这类模型已成功应用并解决很多问题,但由于需要大量超参数微调、神经网络结构的设计及众多训练技巧等原因,导致GANs 的训练一直以来是个很大的挑战。为了解决GANs 的量化标准以及对其失败模式分析等问题,许多研究者提出了一系列损失函数、正则化方法、归一化及不同的网络结构来解决GANs 模型的量化标准问题并试图从其失败模式中找到有效的解决方案。本文中,我们将从实践的角度清醒地认识当前GANs 的研究现状。通过复现一些性能最佳的模型,来探索当前整个 GANs 的研究情况。此外,我们进一步讨论了GANs 模型一些常见的陷阱(pitfall) 及复现问题。最后,我们在GitHub 开源了本文的研究项目,并在TensorFlow Hub 上提供了预训练的模型。
---- 编译:小潘、肖琴 【新智元导读】生成对抗网络GAN的提出者Ian Goodfellow在推特上推荐了10篇GAN论文,是跟踪GAN进展,了解最新技术不容错过的。本文带来整理和介绍,希望能给读者带来启发。 1. Progressive Growing of GANs for Improved Quality, Stability, and Variation Tero Karras, Timo Aila, Samuli Laine & Jaakko Lehtinen (NVIDIA and A
领取专属 10元无门槛券
手把手带您无忧上云