在计算机图形学中,多边形裁剪是一个常用的技术,用于确定多边形与给定裁剪窗口之间的交集。通过裁剪,我们可以剔除不在裁剪窗口范围内的部分,从而减少图形处理的计算量,并加速渲染过程。 Python提供了各种库和算法来实现多边形裁剪。在本篇文章中,我们将使用shapely库来进行多边形的裁剪操作。shapely是一个Python库,提供了一些用于处理几何图形数据的功能。
使用conda,如果没有conda环境建议从这里安装miniconda,选取对应的系统,选择较新的版本。
各位看官老爷,如果觉得对您有用麻烦赏个子,创作不易,0.1元就行了。下面是微信乞讨码:
大家好我是费老师,我写过很多篇介绍geopandas相关技术的文章,而geopandas之所以如此高效易用,成为Python GIS生态中的翘楚,离不开其底层依赖库shapely对其矢量计算功能的支持。
github:https://github.com/Toblerity/Shapely
在Windows python中使用 from shapely.geos import lgeos 会报错,错误一般由于调用了依赖**shapely** 库的代码,比如我就是在调用 imgaug中clip_out_of_image函数时报错,本文记录解决方案。 问题复现 poly.clip_out_of_image(image_aug) Traceback (most recent call last): File "<string>", line 1, in <module> File "
shapely是基于笛卡尔坐标的几何对象操作和分析Python库,底层基于GEOS和JTS库。
geopandas是建立在GEOS、GDAL、PROJ等开源地理空间计算相关框架之上的,类似pandas语法风格的空间数据分析Python库。
大家好我是费老师,geopandas作为在Python中开展GIS分析的利器,可以帮助我们快捷地解决很多日常GIS操作需求。而我们平时工作研究中使用到的各种矢量数据,由于原始数据加工过程的不规范等问题,偶尔会导致某些要素自身的矢量数据信息非法。
需要安装 shapely库 在pip install shapely 的时候报错 发现没有geos库
geopandas是建立在GEOS、GDAL、PROJ等开源地理空间计算相关框架之上的,类似pandas语法风格的空间数据分析Python库,其目标是尽可能地简化Python中的地理空间数据处理,减少对Arcgis、PostGIS等工具的依赖,使得处理地理空间数据变得更加高效简洁,打造纯Python式的空间数据处理工作流。本系列文章就将围绕geopandas及其使用过程中涉及到的其他包进行系统性的介绍说明,每一篇将尽可能全面具体地介绍geopandas对应方面的知识,计划涵盖geopandas的数据结构、投影坐标系管理、文件IO、基础地图制作、集合操作、空间连接与聚合。 作为基于geopandas的空间数据分析系列文章的第一篇,通过本文你将会学习到geopandas中的数据结构。 geopandas的安装和使用需要若干依赖包,如果不事先妥善安装好这些依赖包而直接使用pip install geopandas或conda install geopandas可能会引发依赖包相关错误导致安装失败,官方文档中的推荐安装方式为:
在本系列之前的文章中我们主要讨论了geopandas及其相关库在数据可视化方面的应用,各个案例涉及的数据预处理过程也仅仅涉及到基础的矢量数据处理。
使用Fiona写入Shapefile数据,主要是构建一个Schema,然后将空间对象转为GeoJSON的形式进行写入。
本文为《通过深度学习了解建筑年代和风格》论文复现的第三部分——获取阿姆斯特丹高质量街景图像的上篇,主要讲了如何获取利用谷歌街景地图自动化获取用于深度学习的阿姆斯特丹的高质量街景图像,此数据集将用于进行建筑年代的模型训练[1]。
首先,我们需要安装 geopandas 和 shapely 库。可以通过以下命令来安装:
在本系列之前的文章中我们主要讨论了geopandas及其相关库在数据可视化方面的应用,各个案例涉及的数据预处理过程也仅仅涉及到基础的矢量数据处理。在实际的空间数据分析过程中,数据可视化只是对最终分析结果的发布与展示,在此之前,根据实际任务的不同,需要衔接很多较为进阶的空间操作,本文就将对geopandas中的部分空间计算进行介绍。
Python 环境下常用的地图绘制包是 Basemap,Cartopy,geopandas,KeplerGl,GeoViews等等,我以前常用的是Basemap,但无奈官方已经在2020年更新了,官方推荐使用Cartopy作为替代。
大家好我是费老师,就在前两天,Python生态中的GIS运算神器geopandas发布了其0.14.0新版本,在这次新版本更新中,不仅是新增了许多矢量计算API,还开始为日后正式发布1.0版本做准备,对一些底层依赖版本进行改动。今天的文章中,我就将为大家一一介绍相关的更新内容:
shapely是python中开源的空间几何对象库,支持Point(点),LineString(线), Polygon(面)等几何对象及相关空间操作。
我提供一个如下的maskout.py代码(这份代码由于经过多位大佬们的完善,具体出自谁手我已经不太清楚了,反正感谢大佬们辛苦开发),大家使用前直接运行一下下面的代码或者import maskout即可。
之前在公众号做过一个关于我国1945~2015年历史台风统计的可视化展示,发现很多有趣的数据,比如说台风登陆最多的城市是湛江。
shapely-开源GIS库Pysal-空间计量库Geopandas-空间数据分析库Arcpy-arcgis python接口Arcgis API for pythonGeoplot-高阶地理数据可视化接口
为了拓展python在地学的应用,一个比较流行的库geopandas,还是有必要接触的,但是接触的第一感觉就并不是太友好,对于其geometry的设定,初衷是不错的,可是体验效果有点糟糕,但是打开其中的字段,呈现的不是数据,而是矢量对象(如面图层),对我刚接触的人来说算是意外,但对于我更敏感的数据层面,我觉得按照pandas数组或者numpy数据的习惯而言,第一手应该还是数据,可能比较容易接受(个人偏见,慢慢深入之后应该会有改观)。另外geometry的数据量偏大的时候很容易造成打开速度变慢。
使用Python中的Shapely模块可轻松地进行Skew IOU Computation:
在目标检测中一个很重要的问题就是NMS及IOU计算,而一般所说的目标检测检测的box是规则矩形框,计算IOU也非常简单,有两种方法:
来源为华中科技大学白翔老师。import numpy as np import shapelyfrom shapely.geometry import Polygon,MultiPoint #多边形 line1=[2,0,2,2,0,0,0,2] #四边形四个点坐标的一维数组表示,[x,y,x,y....]a=np.array(line1).reshape(4, 2) #四边形二维坐标表示poly1 = Polygon(a).convex_hull #python四边形对象,会自动计算四个点,最
上一篇的推文我们使用geopandas+plotnine 完美绘制高斯核密度插值的空间可视化结果,并提供了一个简单高效的裁剪方法,具体内容点击链接:Python-plotnine 核密度空间插值可视化绘制Python-plotnine 核密度空间插值可视化绘制。
很多软件内置了OCR功能,即图片提取文字功能。有些是免费提供给大家使用,但有些是收费的。不管是免费的还是收费的,终究逃离不了隐私问题。用别人的OCR,总得把图片传到对方的服务器。今天我们使用Python开发一个OCR软件,如下图所示。
1、PaddleOCR是基于深度学习的ocr识别库,中文识别精度相当还不错,能够应对大多数文字提取需求。
是不是感觉被封面图和不明觉厉的题目给骗进来了哈哈哈,今天这篇是理论篇,没有多少案例,而且还很长,所以静不下心的小伙伴儿可以先收藏着,时间充裕了再看。 ---- 当今互联网和大数据发展的如此迅猛,大量的运营与业务数据需要通过可视化呈现来给商业分析人员提供有价值的决策信息,而地理信息与空间数据可视化则是可视化分析中至关重要而且门槛较高的一类。 通常除了少数本身具备强大前端开发能力的大厂之外,很多中小型企业在内部预算资源有限的情况下,并不具备自建BI和完整可视化框架的能力。需要借助第三方提供的开源可视化平台或者
Cartopy 利用强大的PROJ.4,numpy和shapely库,并包括基于Matplotlib构建的编程接口,用于创建出版质量地图。cartopy 的主要特点是其面向对象的投影定义,以及在这些投影之间转换点、线、向量、多边形和图像的能力。 一、下载相关wheel 网址:https://www.lfd.uci.edu/~gohlke/pythonlibs/#cartopy
上个月瑞幸咖啡的酱香拿铁火出圈,让瑞幸再一次出现在聚光灯下,上一次还是财务造假的时候。
如何用Python分析诸如各国人口和GDP数据,各省市房价等地理相关数据,并在地图上优雅地展示你的结果?你需要geopandas!?? 一,GeoPandas总体介绍 geopandas 是pand
这怎么搞呢?他找到一个使用polygon计算matplotlib绘图对象面积的方法
我们经常会在一些「PPT报告」或者「宣传广告」中看到一些比较抽象的地图,它们都是在正常地图的基础上,通过置换几何元素,来实现出较为抽象的效果,这类的作品非常之多,因此本文不模仿实际的某幅作品,而是制作出下面三类抽象地图:
我们经常会在一些PPT报告或者宣传广告中看到一些比较抽象的地图,它们都是在正常地图的基础上,通过置换几何元素,来实现出较为抽象的效果,这类的作品非常之多,因此本文不模仿实际的某幅作品,而是制作出下面三类抽象地图:
在气象数据分析中,地理空间要素是一个必须考虑的关键特征项,也是重要的影响因素。例如气温会随着海拔的升高而降低,地形的坡向朝向也会影响风速的分布,此外,典型的地形会形成特定的气候条件,也是数据挖掘中可以利用的区域划分标准。数据分析中,地理空间分析往往能提供有效的信息,辅助进行决策。随着航空遥感行业的发展,积累的卫星数据也成为了数据挖掘的重要数据来源。 地理空间分析有好多软件可以支持,包括Arcgis,QGIS等软件平台,本系列文章将会着重分享python在地理空间分析的应用。主要包括地理空间数据的介绍,常用的python包,对矢量数据的处理,对栅格数据的处理,以及常用的算法和示例。 地理空间数据包括几十种文件格式和数据库结构,而且还在不断更新和迭代,无法一一列举。本文将讨论一些常用的地理空间数据,对地理空间分析的对象做一个大概的了解。 地理空间数据最重要的组成部分:
它继承pandas.Series和pandas.Dataframe,实现了GeoSeries和GeoDataFrame类,使得其操纵和分析平面几何对象非常方便。
大家好我是费老师,geopandas作为我们非常熟悉的Python GIS利器,兼顾着高性能和易用性,特别是在其0.12.0版本开始使用全新的shapely2.0矢量计算后端后,性能表现更是一路狂飙。
前几天,一位公众号粉丝问我,Python在GIS领域越来越火,到底有哪些开源库值得学习?
「OD数据」是交通、城市规划以及GIS等领域常见的一类数据,特点是每一条数据都记录了一次OD(O即Origin,D即Destination)行为的起点与终点坐标信息。
有时候,需要在线上的指定位置取点。完全没经验的人,可能会手足无措,不知道该怎么取。今天就来分享一下,怎么使用不同的方式来在线上取点。
世界上较为主流的大学排名有美国U.S. News世界大学排名、英国QS世界大学排名、英国泰晤士高等教育世界大学排名,以及学术类排名如世界大学自然指数排名、中国软科世界大学学术排名等。
空间索引方法有助于加速空间查询。大多数 GIS 软件和数据库都提供了一种机制来计算和使用数据图层的空间索引。QGIS 和 PostGIS 使用基于 R-Tree 数据结构的空间索引方案 - 它使用几何边界框创建分层树。这是非常有效的,并在某些类型的空间查询中产生了很大的加速。查看我的高级 QGIS 课程的空间索引部分,我将展示如何在 QGIS 中使用基于 R 树的空间索引。
OD数据是交通、城市规划以及GIS等领域常见的一类数据,特点是每一条数据都记录了一次OD(O即Origin,D即Destination)行为的起点与终点坐标信息。
人工修正后的每一个框与算法输出的所有框去计算IOU,取出IOU大于0.9的算法输出框
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力开发者训练出更好的模型,并应用落地。
领取专属 10元无门槛券
手把手带您无忧上云