首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

scala.List和scala.collection.immutable.List有什么不同?

scala.List和scala.collection.immutable.List是Scala语言中的两种列表实现方式。

scala.List是Scala标准库中的一个不可变列表实现。它是一个递归的数据结构,由一个头部元素和一个指向剩余元素列表的指针组成。由于它是不可变的,所以对列表的操作会返回一个新的列表,而不会改变原始列表。scala.List提供了丰富的操作方法,如头部元素获取、尾部元素获取、元素追加、元素插入等。它的应用场景包括函数式编程、递归算法等。

scala.collection.immutable.List是Scala集合框架中的一个不可变列表实现。它也是一个递归的数据结构,由一个头部元素和一个指向剩余元素列表的指针组成。与scala.List相比,scala.collection.immutable.List提供了更多的操作方法和功能,如列表连接、列表拆分、列表反转等。它的应用场景包括函数式编程、数据处理、算法实现等。

推荐的腾讯云相关产品和产品介绍链接地址:

  • 腾讯云云服务器(CVM):提供弹性计算能力,满足各类业务需求。详情请参考:https://cloud.tencent.com/product/cvm
  • 腾讯云云数据库MySQL版:提供高性能、可扩展的MySQL数据库服务。详情请参考:https://cloud.tencent.com/product/cdb_mysql
  • 腾讯云对象存储(COS):提供安全、稳定、低成本的云端存储服务。详情请参考:https://cloud.tencent.com/product/cos
  • 腾讯云人工智能平台(AI Lab):提供丰富的人工智能服务和开发工具,助力开发者构建智能应用。详情请参考:https://cloud.tencent.com/product/ailab
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

大数据技术之_16_Scala学习_07_数据结构(上)-集合

1、Set、Map 是 Java 中也有的集合。   2、Seq 是 Java 中没有的,我们发现 List 归属到 Seq 了,因此这里的 List 就和 java 不是同一个概念了。   3、我们前面的 for 循环有一个 1 to 3,就是 IndexedSeq 下的 Vector。   4、String 也是属于 IndexeSeq。   5、我们发现经典的数据结构,比如 Queue 和 Stack 被归属到 LinearSeq。   6、大家注意 Scala 中的 Map 体系有一个 SortedMap,说明 Scala 的 Map 可以支持排序。   7、IndexSeq 和 LinearSeq 的区别     IndexSeq 是通过索引来查找和定位,因此速度快,比如 String 就是一个索引集合,通过索引即可定位。     LineaSeq 是线型的,即有头尾的概念,这种数据结构一般是通过遍历来查找,它的价值在于应用到一些具体的应用场景(比如:电商网站,大数据推荐系统:最近浏览的10个商品)。

01

java.io.IOException: unexpected exception type

WARN TaskSetManager:66 - Lost task 0.0 in stage 0.0 (TID 0, 172.17.190.98, executor 1): java.io.IOException: unexpected exception type at java.io.ObjectStreamClass.throwMiscException(ObjectStreamClass.java:1736) at java.io.ObjectStreamClass.invokeReadResolve(ObjectStreamClass.java:1266) at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:2078) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1573) at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2287) at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:2211) at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:2069) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1573) at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2287) at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:2211) at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:2069) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1573) at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2287) at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:2211) at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:2069) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1573) at java.io.ObjectInputStream.readObject(ObjectInputStream.java:431) at scala.collection.immutable.List$SerializationProxy.readObject(List.scala:490) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)

01
  • Scala学习笔记

    大数据框架(处理海量数据/处理实时流式数据) 一:以hadoop2.X为体系的海量数据处理框架         离线数据分析,往往分析的是N+1的数据         - Mapreduce             并行计算,分而治之             - HDFS(分布式存储数据)             - Yarn(分布式资源管理和任务调度)             缺点:                 磁盘,依赖性太高(io)                 shuffle过程,map将数据写入到本次磁盘,reduce通过网络的方式将map task任务产生到HDFS         - Hive 数据仓库的工具             底层调用Mapreduce             impala         - Sqoop             桥梁:RDBMS(关系型数据库)- > HDFS/Hive                   HDFS/Hive -> RDBMS(关系型数据库)         - HBASE             列式Nosql数据库,大数据的分布式数据库  二:以Storm为体系的实时流式处理框架         Jstorm(Java编写)         实时数据分析 -》进行实时分析         应用场景:             电商平台: 双11大屏             实时交通监控             导航系统  三:以Spark为体系的数据处理框架         基于内存            将数据的中间结果放入到内存中(2014年递交给Apache,国内四年时间发展的非常好)         核心编程:             Spark Core:RDD(弹性分布式数据集),类似于Mapreduce             Spark SQL:Hive             Spark Streaming:Storm         高级编程:             机器学习、深度学习、人工智能             SparkGraphx             SparkMLlib             Spark on R Flink

    04
    领券