2024-04-06:用go语言,给你两个非负整数数组 rowSum 和 colSum, 其中 rowSum[i] 是二维矩阵中第 i 行元素的和, colSum[j] 是第 j 列元素的和,换言之你不知道矩阵里的每个元素...请找到大小为 rowSum.length x colSum.length 的任意 非负整数 矩阵。 且该矩阵满足 rowSum 和 colSum 的要求。...2.遍历rowSum数组,对于每个元素rowSum[i],继续遍历colSum数组,对于每个元素colSum[j]: • 将ans[i][j]设为rowSum[i]和colSum[j]中的较小值,即ans...• 更新rowSum[i]和colSum[j],分别减去已经分配的值ans[i][j],即rowSum[i] -= ans[i][j],colSum[j] -= ans[i][j]。...总的时间复杂度:遍历rowSum和colSum数组需要O(n^2)的时间复杂度,其中n是rowSum和colSum的长度。因此,总的时间复杂度为O(n^2)。
Solution **解析:**Version 1,贪心算法,由于矩阵中的每一个元素matrix[i][j]一定不大于min(rowSum[i], colSum[j],因此将matrix[i][j]设置为...min(rowSum[i], colSum[j]就可以解决一行或一列的数值设置问题,当前行或当前列剩余的元素为0,遍历所有元素存在重复设置的问题。...Version 2进行了优化,减少了重复设置的问题,如果输出Version 1最终的rowSum, colSum,会发现所有的元素都变为了0,而Version 2的则不是,Version对于不再用到的rowSum...j += 1 elif rowSum[i] < colSum[j]: matrix[i][j] = rowSum[i]...colSum[j] -= rowSum[i] i += 1 else: matrix[i][j] = rowSum
我们构建的填充方法为: 考察第i行和第j列,如果rowSum[i] rowSum[i],而后我们更新colSum[j]的和为colSum...[j] - rowSum[i](因为已经填充了一个元素),反之亦然。...代码实现 给出python代码实现如下: class Solution: def restoreMatrix(self, rowSum: List[int], colSum: List[int]...[ii] return if rowSum[i] <= colSum[j]: colSum[j] -= rowSum...ans[i][jj] = 0 rowSum[i] = 0 dp(i+1, j, rowSum, colSum) else
给定行和列的和求可行矩阵 medium 题目链接 给你两个非负整数数组 rowSum 和 colSum ,其中 rowSum[i] 是二维矩阵中第 i 行元素的和, colSum[j] 是第 j 列元素的和...请找到大小为 rowSum.length x colSum.length 的任意 非负整数 矩阵,且该矩阵满足 rowSum 和 colSum 的要求。...示例 1: 输入:rowSum = [3,8], colSum = [4,7] 输出:[[3,0], [1,7]] 解释: 第 0 行:3 + 0 = 0 == rowSum[0] 第 1...], [6,0,3]] 示例 4: 输入:rowSum = [1,0], colSum = [1] 输出:[[1], [0]] 示例 5: 输入:rowSum...= [0], colSum = [0] 输出:[[0]] 提示: 1 rowSum.length, colSum.length <= 500 0 rowSum[i], colSum[i
[rowSum,2],excel.Cells[rowSum,2]).HorizontalAlignment = XlHAlign.xlHAlignCenter; // //设置选中的部分的颜色...// xSt.get_Range(excel.Cells[rowSum,colSum],excel.Cells[rowSum,colIndex]).Select(); xSt.get_Range...(excel.Cells[rowSum,colSum],excel.Cells[rowSum,colIndex]).Interior.ColorIndex = 19;//设置为浅黄色,共计有56种...,colIndex]).Borders.LineStyle = 1; xSt.get_Range(excel.Cells[4,2],excel.Cells[rowSum,2]).Borders...,2],excel.Cells[rowSum,colIndex]).Borders[XlBordersIndex.xlEdgeBottom].Weight = XlBorderWeight.xlThick
countServers(self, grid: List[List[int]]) -> int: m = len(grid) n = len(grid[0]) # rowSum...= [sum(grid[i]) for i in range(m)] # colSum = [sum(x) for x in zip(*grid)] rowSum =...in range(m): for j in range(n): if grid[i][j] == 1: rowSum...0 for i in range(m): for j in range(n): if grid[i][j] == 1 and (rowSum
snum = rowsum[0][j].num+rowsum[1][j].num; dst[RIDX(0, j, dim)].red = (unsigned short)((rowsum...= rowsum[i-1][j].num+rowsum[i][j].num+rowsum[i+1][j].num; dst[RIDX(i, j, dim)].red = (unsigned...short)((rowsum[i-1][j].red+rowsum[i][j].red+rowsum[i+1][j].red)/snum); dst[RIDX(i, j,...dim)].blue = (unsigned short)((rowsum[i-1][j].blue+rowsum[i][j].blue+rowsum[i+1][j].blue)/snum);...dst[RIDX(i, j, dim)].green = (unsigned short)((rowsum[i-1][j].green+rowsum[i][j].green+rowsum[i+1][j]
sumSet[0] = struct{}{} rowSum := 0 for c := 0; c < col; c++ {...colSum[c] += matrix[e][c] rowSum += colSum[c] it, ok := ceiling(sumSet..., rowSum-k) if ok { res = getMax(res, rowSum-it)...} sumSet[rowSum] = struct{}{} } //sumSet.clear();
[rowSum,2],excel.Cells[rowSum,2]).HorizontalAlignment = XlHAlign.xlHAlignCenter; // //设置选中的部分的颜色... // xSt.get_Range(excel.Cells[rowSum,colSum],excel.Cells[rowSum,colIndex]).Select(); xSt.get_Range...(excel.Cells[rowSum,colSum],excel.Cells[rowSum,colIndex]).Interior.ColorIndex = 19;//设置为浅黄色,共计有56种 ...,colIndex]).Borders.LineStyle = 1; xSt.get_Range(excel.Cells[4,2],excel.Cells[rowSum,2]).Borders[...,2],excel.Cells[rowSum,colIndex]).Borders[XlBordersIndex.xlEdgeBottom].Weight = XlBorderWeight.xlThick
if i % 500 == 0: print("\t-----iter: ", i , ", cost: ", cost(err, label_data)) rowsum...= -err.sum(axis=1) rowsum = rowsum.repeat(k, axis=1) err = err / rowsum for
print('Test_accuracy : ', Dataprecessing.Calculate_accuracy(x_target_test, test_predict)) rowsum...= -err.sum(axis = 1) rowsum = rowsum.repeat(k, axis = 1) err = err / rowsum
function [ dataMade ] = TFIDF( dataSet ) [m,n] = size(dataSet);%计算dataSet的大小,m为词的个数,n为标题的个数 %rowSum...= sum(dataSet);% 每个标题中关键词的总和 rowSum = [8,6,19,6,8,19,6,4,18]; colSum = sum(dataSet,2);% 每个词在不同标题中出现的总和.../rowSum(:,j))*TempIDF; end end end 主函数 %% TF_IDF % load data % 注意每一列为标题,每一行为词 dataSet
labels, idx_train, idx_val, idx_test def normalize_adj(mx): """Row-normalize sparse matrix""" rowsum...= np.array(mx.sum(1)) r_inv_sqrt = np.power(rowsum, -0.5).flatten() r_inv_sqrt[np.isinf(r_inv_sqrt...transpose().dot(r_mat_inv_sqrt) def normalize_features(mx): """Row-normalize sparse matrix""" rowsum...= np.array(mx.sum(1)) r_inv = np.power(rowsum, -1).flatten() r_inv[np.isinf(r_inv)] = 0.
preprocess_features(features): """Row-normalize feature matrix and convert to tuple representation""" rowsum...= np.array(features.sum(1)) r_inv = np.power(rowsum, -1).flatten() r_inv[np.isinf(r_inv)] =
代码示例:使用parfor加速矩阵计算% 创建一个大矩阵n = 10000;A = rand(n);% 使用parfor并行计算每一行的和rowSum = zeros(1, n);parfor i =...1:n rowSum(i) = sum(A(i, :));end% 输出部分结果disp(rowSum(1:5));在此例中,parfor将矩阵A的每一行的求和任务分配给不同的工作线程,进而加速计算
#include using namespace std; const int SIZE = 100; int matrix[SIZE + 1][SIZE + 1]; int rowsum...[SIZE + 1][SIZE + 1]; /* rowsum[i][j]记录第i行前j个数的和 */ int m, n, i, j, first, last, area, ans; int main(...i <= m; i++ ) ②; for ( i = 1; i <= m; i++ ) for ( j = 1; j <= n; j++ ) rowsum
ks.test K检验(经验分布的Kolmogorov-Smirnov检验) binom.test 二项分布总体假设检验 mcnemar.test McNemar频数检验 五、批处理计算函数 t 矩阵转置 rowsum
RNGversion round.Date round.POSIXt row row.names row.names.data.frame row.names.default rowMeans rownames rowsum...rowsum.data.frame rowsum.default rowSums sample sample.int sapply save save.image saveRDS scale scale.default
领取专属 10元无门槛券
手把手带您无忧上云