JuiceFS 是一个云原生的企业级开源共享文件系统,广泛应用于大数据、企业级数据共享、Kubernetes 容器编排、AI 机器学习、Web 服务和内容管理、数据容灾备份等场景。它将对象存储作为大容量本地磁盘使用,为云上应用提供近乎无限的存储空间。与此同时,得益于其独特的技术架构,在存储和处理大规模数据时,性能通常高于本地存储。
Google Colaboratory(Colab)是一个由 Google 提供的云端 Jupyter 编程笔记本,直接通过浏览器即可进行 Python 编程。Colab 充分利用谷歌的闲置云计算资源,为公众提供免费的的在线编程服务,以及免费的 GPU 资源,虽然在使用方面有一定的规则限制,但对于一般的研究和学习来说绰绰有余。
近年来,云计算已成为主流,企业从自身利益出发,或是不愿意被单一云服务商锁定,或是业务和数据冗余,或是出于成本优化考虑,会尝试将部分或者全部业务从线下机房迁移到云或者从一个云平台迁移到另一个云平台,业务迁移涉及到数据的迁移。正好 JuiceFS 已经对接了各种对象存储的 API ,也实现了数据同步的逻辑,让我们来了解下 JuiceFS 的 sync 命令。
JuiceFS 是一个创新性的软件产品,很多初次尝试的小伙伴对产品和用法感到很多疑惑,所以为了帮助大家快速理解并上手 JuiceFS,我们整理了24个关于 JuiceFS 经典的问题答案,相信经过这 24 问,大家对 JuiceFS 会有更清晰的认识,使用上也会更加得心应手。
最近研究文件系统,把近期比较火的JuiceFS代码翻出来看了一下,研究为啥其性能要比CephFS要好。
Alluxio(/əˈlʌksio/)是大数据和机器学习生态系统中的数据访问层。最初作为研究项目「Tachyon」,它是在加州大学伯克利分校的 AMPLab 作为创建者 2013 年的博士论文创建的。Alluxio 于 2014 年开源。
最近,留意到 MinIO 官方博客的一篇题为“在对象存储上实现 POSIX 访问接口是坏主意”的文章,作者以 S3FS-FUSE 为例分享了通过 POSIX 方式访问 MinIO 中的数据时碰到了性能方面的困难,性能远不如直接访问 MinIO。在对结果进行分析时,作者认为是 POSIX 本身存在的缺陷导致的性能问题。这个结论与我们既有经验有一定出入。
贾晶晶,Zilliz 数据工程师 & 高昌健,Juicedata 解决方案架构师,十年互联网行业从业经历,曾在知乎、即刻、小红书多个团队担任架构师职位,专注于分布式系统、大数据、AI 领域的技术研究。
很多新入坑Loki的小伙伴当看到distributor、ingester、querier以及各种依赖的三方存储时,往往都比较懵逼,不知道从哪儿入手。此外再加上官方的文档里面对于集群部署的粗浅描述,更是让新手们大呼部署太难。其实,除了官方的helm外,藏在Loki仓库的production目录里面有一篇生产环境的集群部署模式。
JuiceFS 是一款面向云原生设计的高性能共享文件系统,在 Apache 2.0 开源协议下发布。提供完备的 POSIX 兼容性,可将几乎所有对象存储接入本地作为海量本地磁盘使用,亦可同时在跨平台、跨地区的不同主机上挂载读写。
JuiceFS v1.0 beta3 在元数据引擎方面继续增强,新增 etcd 支持小于 200 万文件的使用场景,相比 Redis 可以提供更好的可用性和安全性。同时支持了 Amazon MemoryDB for Redis 和 Redis Cluster。至此,JuiceFS 支持的元数据引擎有:
抛开业务背景保密不谈,技术背景为提升网络可靠性,需要将存储在对象存储平台A的文件迁移到对象存储平台B上。两个平台的技术差异很小,可以忽略。
对于数字和文本类型的数据,比方说名字和电话号码相关的信息。我们需要有个地方存起来。
中国电信大数据集群每日数据量庞大,单个业务单日量级可达到 PB 级别,且存在大量过期数据(冷数据)、冗余数据,存储压力大;每个省公司都有自己的集群,以及多个收集全国各省级业务信息的集团大数据集群,导致数据分散冗余,省集群与集团集群数据无法共享,跨地域任务延迟高。
保存像图片、音视频这类大文件就是对象存储。不仅有很好的大文件读写性能,还可通过水平扩展实现近乎无限容量,并兼顾服务高可用、数据高可靠。
哈希hash又称为散列、杂凑等,是将任意长度的输入通过散列算法变换为固定长度的输出,最终输出也就是哈希值。这种转换是一种压缩映射。也就是说,散列值的空间通常要远小于输入控件,不同的输入可能会散列成相同的输出,所以不可能通过散列值来确定唯一的输入值。
不管什么电商系统,商品详情页一定是整个系统中日均访问次数最高的页面之一.不难理解,用户购物,看商品详情不一定买,一定会看好多商品详情页货比三家.如果在设计存储时,没有考虑到并发,on sale 时,支撑商详页的商品系统必然是第一个被流量冲垮的系统
商品页面展示的数据很多,主要是商品的基本信息,比如名称颜色,商品介绍页,还有图片和视频展示,最要命的是不同类的商品的参数不同,比如电脑有内存,显卡,CPU等参数,衣服有尺码,男女等参数,口红有色号等参数
云知声 Atlas 团队在 2021 年初开始接触并跟进 JuiceFS 存储,并且在早期已经积累了丰富的 Fluid 使用经验。近期,云知声团队与 Juicedata 团队合作开发了 Fluid JuiceFS 加速引擎,使用户能够更好地在 Kubernetes 环境中使用 JuiceFS 缓存管理能力。本篇文章讲解如何在 Kubernetes 集群中玩转 Fluid + JuiceFS。
随着大数据、AI 技术的发展,越来越多的企业、团队和个人开始使用 JuiceFS,本文整理了 6 个超实用的 JuiceFS 技巧,帮助大家提升 JuiceFS 的管理效率。
电商的商品系统所包含的主要功能就是增、删、改、查商品信息,业务逻辑比较简单,支撑的主要页面就是商品详情页。尽管如此,在设计商品系统的存储架构时,仍然需要着重考虑如下两个方面的问题。
今天,云原生分布式文件系统官方公众号 Juicedata果汁数据科技发布消息称 JuiceFS 已经开源了!
云知声是一家专注于语音及语言处理的技术公司。Atlas 超级计算平台是云知声的计算底层基础架构,为云知声在 AI 各个领域(如语音、自然语言处理、视觉等)的模型迭代提供训练加速等基础计算能力。Atlas 平台深度学习算力超过 57 PFLOPS(5.7 亿亿次/秒,是的你没有看错,是亿亿次]
最近看到了几个事情,一个是某保险系统,为了快速上线,全量上云,结果生产正式运行后每月账单高达几十万。相关业务总扛不住这个支出,又劳师动众,让下面的项目经理、开发、运维、架构师花了3个月把业务全量从公有云迁移下来。相关人员被折磨的半死不活,而且大大拖慢了系统的迭代速度。
JuiceFS 是一款面向云原生环境设计的高性能 POSIX 文件系统,在 AGPL v3.0 开源协议下发布。作为一个云上的分布式文件系统,任何存入 JuiceFS 的数据都会按照一定规则拆分成数据块存入对象存储(如 Amazon S3),相对应的元数据则持久化在独立的数据库中。这种结构决定了 JuiceFS 的存储空间可以根据数据量弹性伸缩,可靠地存储大规模的数据,同时支持在多主机之间共享挂载,实现跨云跨地区的数据共享和迁移。
我们的系统主要功能是从亚马逊获取数据,存入数据库中,最后做数据分析。这期间最大的一个问题是:跨境网络传输,网络不稳定,请求会发生大量的5**错误,导致某一些用户的数据获取不到,因为一直失败重试,又恶性导致触发亚马逊服务限流。
火山引擎边缘云是以云计算基础技术和边缘异构算力结合网络为基础,构建在边缘大规模基础设施之上的云计算服务,形成以边缘位置的计算、网络、存储、安全、智能为核心能力的新一代分布式云计算解决方案。
JuiceFS 作为分布文件系统,每天与海量的数据打着交道,因此数据的安全性尤为关键,今天就来介绍一下 JuiceFS 在数据加密方面所做的努力。
传统的机器学习模型,数据集比较小,模型的算法也比较简单,使用单机存储,或者本地硬盘就足够了,像 JuiceFS 这样的分布式存储并不是必需品。
AiSuite 是 NAVER 开发者所使用的人工智能平台,它支持 NAVER 的各种服务的开发和运维。
现在业务系统设计中,存储设计扮演着至关重要的角色。随着数据量的爆炸性增长和业务需求的不断变化,如何高效、安全地存储和管理数据成为了每个业务系统设计必须面对的挑战。
在我们日常的运维工作中,经常会涉及到需要在多台云服务器之间共享数据的情况。如果都在同一个局域网,那么使用 SMB/CIFS、NFS 等文件级共享协议就可以。但要是服务器都在云上,位于不同的可用区,或是分布在不同的云平台上,这种情况下共享数据就会存在一定的难度。
Loki Operator 前段时间小白在《Loki多租户模式下的方案》文中说到日志分区存储的方案时,引入了一个Loki控制器来帮助平台租户创建自己独占资源的Loki实例。一个月过去了,之前埋下的这
前几天看到某大型家电工厂的工业互联网系统架构图,发现用MongoDB存储图片及视频。那Redis同样也是Json类型的远程数据字典服务器,也可以用于存储图片、视频。实际Redis可以用512MB的空间存储用于存储字符串型的数据。
需要注意的是,虽然Redis本身是单线程的,但多线程环境下使用Redis客户端依然可能存在线程安全问题。因此,在使用Redis客户端时,需要根据具体的场景和需求选择合适的线程安全解决方案,并进行充分的测试和验证。
若一个K的V很大,则可能对Redis产生明显的性能影响。因为Redis是单线程模型,对于大K进行查询或删除,可能会导致Redis阻塞。 那我们开发时应该如何查询Redis中的大K,以及如何在设计上实现大K的拆分呢,即如何优化?
MinIO 是一个基于Apache License v2.0开源协议的对象存储服务。它兼容亚马逊S3云存储服务接口,非常适合于存储大容量非结构化的数据,例如图片、视频、日志文件、备份数据和容器/虚拟机镜像等,而一个对象文件可以是任意大小,从几kb到最大5T不等。
背景: 在移动互联网时代,即时通信是一种最基础的产品场景。但当前主流的即时通信软件,对一些企业,特别是对于政务、金融、医疗等领域的企业来说,数据不够安全,容易造成信息泄露。他们并不想将核心数据资产放置在非本地。同时,很多知名企业需要定制属于自己品牌的IM + UI 来提升企业形象,而不愿选择使用一些普遍性的即时通信软件。这些因素都使得很多企业迫切的需要IM私有化服务。 针对当前众多企业对于私有化的迫切需求,腾讯云即时通信IM已全面支持私有化部署功能。我们将为企业提供SDK+后台服务私有化部署。客户
在当今数据驱动的时代,企业对于数据库的需求愈发复杂多样。为了应对各种业务场景,选择和应用合适的数据库变得至关重要。本文将深入探讨6大数据库技术,并为其在7种常见业务场景下的存储提供更优解。
JuiceFS 是一款面向云原生设计的高性能分布式文件系统,在 Apache 2.0 开源协议下发布。提供完备的 POSIX 兼容性,可将几乎所有对象存储接入本地作为海量本地磁盘使用,亦可同时在跨平台、跨地区的不同主机上挂载读写。
后端具备定时任务自动判断是否到期进行修改,所以使用者无需考虑预约到期、活动到期、借阅到期的任务。
如果一个Key的Value特别大,那么可能会对Redis产生巨大的性能影响,因为Redis是单线程模型,对大Key进行查询或删除等操作,可能会引起Redis阻塞甚至是高可用切换。 应该如何查询Redis中的大Key,以及如何在设计上实现大Key的拆分呢?
存储系统是个专业性的整个体系,我们只用常见方式搭建,具体优化需要参照公司自己的产品等各种进行调整
在我们线上的生产环境中要备份的东西很多,各种服务日志、数据库数据、用户上传数据、代码等等。用 JuiceFS 来备份可以节省你大量时间,我们会围绕这个主题写一系列的教程,整理出一套最佳实践,方便大家。
了不起最近发现,同事们都比较喜欢使用Redis来缓存数据,而且都是使用String来实现所有的缓存操作,对于其他数据结构使用的频率较少,所以今天了不起收集了一些常用的命令,让大家更熟悉Redis的操作。
某医药集团信息中心数据库组组长,13 年数据库行业从业经历,Oracle OCM,关注 Oracle、MySQL、Redis、MongoDB、Oceanbase、Tidb、Polardb-X、TDSQL、CDH、Clickhouse、Doris、Databend 等多方面的关键领域技术,服务过传统通信、电力,互联网、移动互联网等行业。
如果Key特别热,可能Redis也无法承受,毕竟所有的访问都集中打到了一台缓存服务器。如果我们使用Redis来做缓存,那可以把一个热点Key的缓存查询压力,分散到多个Redis节点上吗?
【技思广益 · 腾讯技术人原创集】是腾讯云开发者社区为腾讯技术人与广泛开发者打造的分享交流窗口。栏目邀约腾讯技术人分享原创的技术积淀,与广泛开发者互启迪共成长。
领取专属 10元无门槛券
手把手带您无忧上云