有赞大数据技术应用的早期,我们使用 Sqoop 作为数据同步工具,满足了 MySQL 与 Hive 之间数据同步的日常开发需求。
上一篇详细讲解了如何用Canal和Kafka,将MySQL数据实时全量同步到Greenplum。对照本专题第一篇中图1-1的数据仓库架构,我们已经实现了ETL的实时抽取过程,将数据同步到RDS中。本篇继续介绍如何实现后面的数据装载过程。实现实时数据装载的总体步骤可归纳为:
从本篇开始,介绍使用Kettle实现Hadoop数据仓库的ETL过程。我们会引入一个典型的订单业务场景作为示例,说明多维模型及其相关ETL技术在Kettle上的具体实现。本篇首先介绍一个小而典型的销售订单示例,描述业务场景,说明示例中包含的实体和关系,并在MySQL数据库上建立源数据库表并生成初始的数据。我们要在Hive中创建源数据过渡区和数据仓库的表,因此需要了解与Hive创建表相关的技术问题,包括使用Hive建立传统多维数据仓库时,如何选择适当的文件格式,Hive支持哪些表类型,向不同类型的表中装载数据时具有哪些不同特性。我们将以实验的方式对这些问题加以说明。在此基础上,我们就可以编写Hive的HiveQL脚本,建立过渡区和数据仓库中的表。本篇最后会说明日期维度的数据装载方式及其Kettle实现。
使用阿里云rds for MySQL数据库(就是MySQL5.6版本),有个用户上网记录表6个月的数据量近2000万,保留最近一年的数据量达到4000万,查询速度极慢,日常卡死。严重影响业务。
在数据处理领域,数据分析师在数据湖上运行其即席查询。数据湖充当分析和生产环境之间的接口,可防止下游查询影响上游数据引入管道。为了确保数据湖中的数据处理效率,选择合适的存储格式至关重要。
系统的数据,就是公司的生命。哪怕是狗屎,我们也要将它冷冻起来冰封以备后用。垃圾的产品设计就比较让人费解,会时不时从冰柜中将屎取出,想要品尝其中残留的味道。
我们都知道,随着业务量的增长,数据量也会随之增加,这个时候就需要关注业务大表,因为大表会影响查询性能,DDL变更时间很长,影响业务的可用性,同时导致从库延迟很大,如果业务做了读写分离,导致用户重复操作产生脏数据,例如重复下单。
来源:https://www.jianshu.com/p/336f682e4b91
TiDB 在使用过程中,随着用户数据量的持续增长,存储成本在数据库总成本中的占比将会越来越高。如何有效降低数据库存储成本摆在了许多用户面前。
在前面,我们介绍过怎么样直接创建一个分区表,也介绍过怎么将一个普通表转换成一个分区表。那么,这两种方式创建的表有什么区别呢?现在,我又最新地创建了两个表:
本期带来的是题目是《管理你元组的坟地》,带来这个话题的是Chelsea,她服务于一家互联网的金融公司,负责以下的工作范围,参加下图,在此之前他是一个后端的开发工程师,现在他是数据管理团队的Team leader
1、数据库中某个表中的数据很多。很多是什么概念?一万条?两万条?还是十万条、一百万条?这个,我觉得是仁者见仁、智者见智的问题。当然数据表中的数据多到查询时明显感觉到数据很慢了,那么,你就可以考虑使用分区表了。如果非要我说一个数值的话,我认为是100万条。
MySQL是一种常用的关系型数据库管理系统,分区表是一种在MySQL数据库中处理大规模数据的最佳方案之一。分区表技术可以将一个大型的表按照某种规则进行拆分成多个小型表,每个小型表称为一个分区,从而提高系统性能、快速处理海量数据和节省存储空间。
本文通过分析2023年5月15日的腾讯财报数据,从多个方面揭示了腾讯在2023年5月15日所呈现的财务、经营和战略状况。
在组件开发迭代的过程中,随着使用时间的增加,数据库中的数据量也不断增加,因此数据库查询越来越慢。
在示例表插入两条记录,按分区规则,记录分别落在p_2018和p_2019分区。 可见,该表包含了一个.frm文件和4个.ibd文件,每个分区对应一个.ibd文件:
如果你的数据库中某一个表中的数据满足以下几个条件,那么你就要考虑创建分区表了。
我经常被问到这样一个问题:分区表有什么问题,为什么公司规范不让使用分区表呢?今天,我们就来聊聊分区表的使用行为,然后再一起回答这个问题。
《高性能MySQL》中:分区的一个主要目的是将数据按照一个较粗的粒度分在不同的表中,这样做可以将相关的数据放在一起,另外,如果想一次批量删除整个分区的数据也会变得很方便。
什么数据库需要进行分区?首先看一下我们的案例:2010年6月我们六期IT开发团队接到一个XX全国连锁店的餐饮系统,经过一周的敏捷开发之后,XX餐饮系统正式上线了,由于该软件的功能强大,操作简单,功能灵活等特性,很快在全国各地铺展开来。XX餐饮店的美食也颇受顾客的喜爱,有的店每天的收入高达1W元人民币,每天这么多的收入,那么每天要产生多大的订单呢?< xmlnamespace prefix =”o” ns =”urn:schemas-microsoft-com:office:office” />
GPDB分区表创建时有可能表名已存在,此时报错退出。但当分区表名超过64字符时,会进行截断,仅保留前63字符,此时就可能出现分区表名不同,截断后创建的分区表名相同从而创建失败的情况;还会出现分区表父表创建成功,但分区子表名创建失败,报表名已存在等错误导致创建失败。本文基于GreenPlum7.0分区表经典语法详细分析分区表名及分区子表名生成机制。
在设计数据库时,经常没有考虑到表分区的问题,往往在数据表承重的负担越来越重时,才会考虑到分区方式,这时,就涉及到如何将普通表转换成分区表的问题了。
在大型数据库系统中,查询和检索数据的性能通常是一个关键问题。在MySQL中,如果单表数据量过大,查询的性能通常会变得很低。
当表中的数据量不断增大,查询数据的速度就会变慢,应用程序的性能就会下降,这时就应该考虑对表进行分区。表进行分区后,逻辑上仍然是一张完整的表,只是将表中的数据在物理上存放到多个表空间(物理文件上),这样查询数据时,不至于每次都扫描整张表。
分区表是数据库中一种用于优化大型表数据管理和查询性能的技术。它将一个表的数据根据特定的规则或条件分割成多个部分,每个部分称为一个分区。每个分区可以独立于其他分区进行存储、管理和查询,这样可以提高数据处理的效率,尤其是在处理大量数据时。
本文转载:http://blog.csdn.net/smallfools/article/details/4930810
分区是将一个表的数据按照某种方式,逻辑上仍是一个表,也就是所谓的分区表。分区引入了分区键的概念,分区键用于根据某个区间值(或者范围值)、特定值列表或者hash函数值执行数据的聚集,让数据根据规则分布在不同的分区中,让一个大对象变成一些小对象,从而实现对数据的分化管理。作为MySQL数据库中的一个重要机制,MySQL分区表优点和限制也是一目了然的,然而又能够同时实现共存。
分区表可以用一张表存储大量数据,达到和物理分表同样的效果,但操作起来更简单,对于使用者来说和普通表无差别
在日常运维工作中交付客户的云主机通常需要挂载超过2T的数据盘,对于超过2T的数据盘需要使用GPT分区表实现,然后老版本的fdisk 分区管理工具不支持GPT分区表需要使用Parted 分区管理工具。
作者介绍 赵勇 云和恩墨北区技术工程师 专注于SQL审核和优化相关工作。曾经服务的客户涉及金融保险、电信运营商、政府、生产制造等行业。 分区裁剪的定义 分区表的实质是采用化整为零的思想,将一个大对象划
分区是一种表的设计模式,通俗地讲表分区是将一大表,根据条件分割成若干个小表。但是对于应用程序来讲,分区的表和没有分区的表是一样的。换句话来讲,分区对于应用是透明的,只是数据库对于数据的重新整理。本篇文章给大家带来的内容是关于MySQL中分区表的介绍及使用场景,有需要的朋友可以参考一下,希望对你有所帮助。
最近数据库行业还是发生一些事情,例如:NebulaGraph获得获得数千万美元的A轮融资,Oracle将在AWS支持MySQL HeatWave服务,VLDB 2022在悉尼举行,来自中国多篇成果被接收,等等,查看原文
但是如果是分区表的话,表数据就会按照你指定的规则分放到不同的文件里,把一个大的数据文件拆分为多个小文件,还可以把这些小文件放在不同的磁盘下由多个cpu进行处理。这样文件的大小随着拆分而减小,还得到硬件系统的加强,自然对我们操作数据是大大有利的。
分区表就是将一个大表在物理上分割成若干小表,并且整个过程对用户是透明的,也就是用户的所有操作仍然是作用在大表上,不需要关心数据实际上落在哪张小表里面。Greenplum中分区表的原理和PostgreSQL一样,都是通过表继承和约束实现的。
随着数据库数据量的不断增长,有些表需要由普通的堆表转换为分区表的模式。有几种不同的方法来对此进行操作,诸如导出表数据,然后创建分区表再导入数据到分区表;使用EXCHANGE PARTITION方式来转换为分区表以及使用DBMS_REDEFINITION来在线重定义分区表。本文描述的是使用导出导入方式来实现,下面是具体的操作示例。
MBR(Master Boot Record)分区是传统的分区方式,它将硬盘分为四个主分区或者三个主分区和一个扩展分区。在每个主分区中都可以安装操作系统,扩展分区可以被多个逻辑分区所包含。MBR 分区表使用了一个特定的引导代码来启动软件,它位于硬盘主引导记录(MBR)的第一扇区。
在上篇Vertica 分区表设计中,已经提过了Vertica的分区表创建和分区删除,但举例上并不系统, 本篇文章将系统的对分区表设计及后续的删除分区进行讲解。
在进行Linux系统的安装或者升级过程中,我们可能会遇到ubi-partman failed with exit code 141的错误提示。这个错误提示通常会伴随着无法继续分区的问题,导致安装或者升级失败。在本文中,我们将深入探讨这个错误的原因和解决方法。
众所周知SQL SERVER , ORACLE , PG 这几个数据库都可以使用分区表的功能,通过分区表来将数据进行分割,提高表的数据承载的能力。MYSQL 8.0 之前是在是没有听说有什么人用分区表的功能,分区表的功能对于mysql来说是一个摆设。
现有6份数据文件,分别记录了《王者荣耀》中6种位置的英雄相关信息。现要求通过建立一张表t_all_hero,把6份文件同时映射加载。
在创建完分区表后,可以向分区表中直接插入数据,而不用去管它这些数据放在哪个物理上的数据表中。我们在创建好的分区表中插入几条数据:
mysq中有一种机制是表锁定和行锁定,是为了保证数据的完整性。表锁定表示你们都不能对这张表进行操作,必须等我对表操作完才行。行锁定也一样,别的sql必须等我对这条数据操作完了,才能对这条数据进行操作。当出现这种情况时,我们可以考虑分表或分区。
MySQL表分区是一种数据库管理技术,用于将大型表拆分成更小、更可管理的分区(子表)。每个分区可以独立进行维护、备份和查询,从而提高数据库性能和管理效率。以下是详细介绍MySQL表分区的步骤和注意事项:
Hive 分区就是将数据按照数据表的某列或者某几列分为多个区域进行存储,这里的区域是指 hdfs 上的文件夹。按照某几列进行分区,就是说按照某列分区后的数据,继续按照不同的分区列进行分区。创建分区后,指定分区值即可直接查询该分区的数据,能够有效提高查询性能。
达梦数据库分区表主要包括范围分区、哈希分区和列表分区三种方式, 企业可以使用合适的分区方法,如日期(范围)、区域(列表),对大量数据进行分区。由于达梦数据库划分的分区是相互独立且可以存储于不同的存储介质上的,完全可满足企业高可用性、 均衡IO、降低维护成本、提高查询性能的要求。今天我们主要讨论水平分区
当一个数据表的数据量达到千万级别以后,每次查询都需要消耗大量的时间,所以当表数据量达到一定量级后我们需要对数据表水平切割。水平分区分表就是把逻辑上的一个表,在物理上按照你指定的规则分放到不同的文件里,把一个大的数据文件拆分为多个小文件,还可以把这些小文件放在不同的磁盘下。这样把一个大的文件拆分成多个小文件,便于我们对数据的管理。
在前面我们介绍过如何创建和使用一个分区表,并举了一个例子,将不同年份的数据放在不同的物理分区表里。具体的分区方式为:
本文最先发布在:https://www.itcoder.tech/posts/fdisk-command-in-linux/
全局唯一标识分区表(GUID Partition Table,缩写:GPT)是一个实体硬盘的分区结构。它是可扩展固件接口标准的一部分,用来替代BIOS中的主引导记录分区表。传统的主启动记录 (MBR) 磁盘分区支持最大卷为 2.2 TB (terabytes) ,每个磁盘最多有 4 个主分区(或 3 个主分区,1 个扩展分区和无限制的逻辑驱动器)。与MBR 分区方法相比,GPT 具有更多的优点,因为它允许每个磁盘有多达 128 个分区,支持高达 18 千兆兆字节 (exabytes,1EB=10^6TB) 的卷大小,允许将主磁盘分区表和备份磁盘分区表用于冗余,还支持唯一的磁盘和分区 ID (GUID)。 与 MBR 分区的磁盘不同,GPT的分区信息是在分区中,而不象MBR一样在主引导扇区。为保护GPT不受MBR类磁盘管理软件的危害,GPT在主引导扇区建立了一个保护分区 (Protective MBR)的MBR分区表,这种分区的类型标识为0xEE,这个保护分区的大小在Windows下为128MB,Mac OS X下为200MB,在Window磁盘管理器里名为GPT保护分区,可让MBR类磁盘管理软件把GPT看成一个未知格式的分区,而不是错误地当成一个未分区的磁盘。另外,GPT 分区磁盘有多余的主要及备份分区表来提高分区数据结构的完整性。
领取专属 10元无门槛券
手把手带您无忧上云