一、损失函数的概念 损失函数(loss function):衡量模型输出与真实标签的差异。...损失函数也叫代价函数(cost function)/ 准测(criterion)/ 目标函数(objective function)/ 误差函数(error function)。...二、Pytorch内置损失函数 1. nn.CrossEntropyLoss 功能:交叉熵损失函数,用于多分类问题。这个损失函数结合了nn.LogSoftmax和nn.NLLLoss的计算过程。...功能:二元交叉熵损失函数,用于二分类问题。...torch.empty(3).random_(2) output = loss(m(input), target) 5. nn.BCEWithLogitsLoss 功能:结合了nn.Sigmoid层和nn.BCELoss的损失函数
损失函数总览 ---- PyTorch 的 Loss Function(损失函数)都在 torch.nn.functional 里,也提供了封装好的类在 torch.nn 里。...PyTorch 里一共有 18 个损失函数,常用的有 6 个,分别是: 回归损失函数: torch.nn.L1Loss torch.nn.MSELoss 分类损失函数: torch.nn.BCELoss...: Cost Function(代价函数)是 N 个预测值的损失函数平均值: Objective Function(目标函数)是最终需要优化的函数: 2....所以优化H(P,Q)等价于优化H(Q) ,因为H(P)是已知不变的。 3.2 分类损失函数 ---- 下面我们来了解最常用的四个分类损失函数。...(损失函数)= torch.nn.CrossEntropyLoss(损失函数)
讲解PyTorch多分类损失函数在机器学习中,多分类问题是指将样本分为两个以上的类别。为了对多分类问题进行有效的训练,我们需要使用适当的损失函数来度量模型预测与真实标签之间的差异。...PyTorch是一个流行的深度学习框架,提供了多种多分类损失函数的实现。本文将带您了解PyTorch中一些常用的多分类损失函数及其用法。1....接下来的梯度计算、梯度清零、反向传播和权重更新与交叉熵损失函数的示例代码相似。3. 其他多分类损失函数除了交叉熵损失函数和负对数似然损失函数,PyTorch还提供了其他许多多分类损失函数的实现。...您可以在PyTorch的官方文档中查找更多多分类损失函数的信息。 希望本文对您理解PyTorch中的多分类损失函数有所帮助。使用适当的损失函数,可以帮助您训练出更准确的多分类模型。...然后,我们使用预训练的ResNet模型作为基础模型,将最后一层的全连接层替换为一个具有10个输出节点的线性层,以适应我们的分类任务。接下来,我们定义了交叉熵损失函数和SGD优化器。
模型学习的根源在于需要知道当前模型的问题出在哪,为模型优化指明方向和距离就需要依靠损失函数, 本文介绍 Pytorch 的损失函数 。 参考 深入浅出PyTorch ,系统补齐基础知识。...本节目录 在深度学习中常见的损失函数及其定义方式 PyTorch中损失函数的调用 二分类交叉熵损失函数 1 torch.nn.BCELoss(weight=None, size_average=None...L1和L1两种损失函数的区别。...CTCLoss对输入和目标的可能排列的概率进行求和,产生一个损失值,这个损失值对每个输入节点来说是可分的。输入与目标的对齐方式被假定为 “多对一”,这就限制了目标序列的长度,使其必须是≤输入长度。.../thorough-pytorch/第三章/3.6 损失函数.html https://blog.csdn.net/weixin_46566663/article/details/127911813
1、损失函数损失函数,又叫目标函数,是编译一个神经网络模型必须的两个要素之一。另一个必不可少的要素是优化器。...损失函数是指用于计算标签值和预测值之间差异的函数,在机器学习过程中,有多种损失函数可供选择,典型的有距离向量,绝对值向量等。...我们先定义两个二维数组,然后用不同的损失函数计算其损失值。...注意这里的 xlabel 和上个交叉熵损失里的不一样,这里是经过 log 运算后的数值。这个损失函数一般也是用在图像识别模型上。...2、其他不常用loss函数作用AdaptiveLogSoftmaxWithLoss用于不平衡类以上这篇Pytorch 的损失函数Loss function使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考
大家好,又见面了,我是你们的朋友全栈君。...MSE: Mean Squared Error(均方误差) 含义:均方误差,是预测值与真实值之差的平方和的平均值,即: M S E = 1 N ∑ i = 1 n ( x i − y i ) 2...主要差别是参数的设置,在torch.nn.MSELoss中有一个reduction参数。...除此之外,torch.nn.MSELoss还有一个妙用,求矩阵的F范数(F范数详解)当然对于所求出来的结果还需要开方。...参考文献 [1]pytorch的nn.MSELoss损失函数 [2]状态估计的基本概念(3)最小均方估计和最小均方误差估计 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。
写在前面 这篇文章的重点不在于讲解FR的各种Loss,因为知乎上已经有很多,搜一下就好,本文主要提供了各种Loss的Pytorch实现以及Mnist的可视化实验,一方面让大家借助代码更深刻地理解Loss...Pytorch代码实现 class Linear(nn.Module): def __init__(self): super(Linear, self)....去除了权重的模长和偏置对loss的影响,将特征映射到了超球面,同时避免了样本量差异带来的预测倾向性(样本量大可能导致权重模长偏大) Pytorch代码实现 class Modified(nn.Module...Pytorch代码实现 class NormFace(nn.Module): def __init__(self): super(NormFace, self)....是每个类别对应的一个中心,在这里就是一个二维坐标啦 Pytorch代码实现 class centerloss(nn.Module): def __init__(self): super
损失函数 损失函数也可以叫代价函数,前面简单提到了,损失函数就是计算预测结果和实际结果差距的函数,机器学习的过程就是试图将损失函数的值降到最小。...所以这俩都是凸函数。对于这种函数很容易找到最小值,但是如果我们处理的是自然语言这种东西,损失都不会是凸函数,所以在处理的时候也复杂的多。...+ b 然后编写损失函数,这里虽然定义的输入参数看起来是两个值,以及上面的model的输入看起来也都是单个数值,但实际上我们可以直接把tensor传进去进行运算,这就涉及到一个PyTorch的广播机制...def loss_fn(t_p, t_c): squared_diffs = (t_p - t_c)**2 return squared_diffs.mean() 设定好了模型函数和损失函数...B.其中一个维度的size为1,那么PyTorch会用这个维度上的单个项与另一个张量在这个维度上的每一项进行运算。
损失函数用来评价模型的预测值和真实值不一样的程度,损失函数越好,通常模型的性能越好。不同的模型用的损失函数一般也不一样。 损失函数分为经验风险损失函数和结构风险损失函数。...经验风险损失函数指预测结果和实际结果的差别,结构风险损失函数是指经验风险损失函数加上正则项。...绝对值损失函数 绝对值损失函数是计算预测值与目标值的差的绝对值: ? 3. log对数损失函数 log对数损失函数的标准形式如下: ?...(3)逻辑回归的损失函数就是log对数损失函数。 4. 平方损失函数 平方损失函数标准形式如下: ? 特点: (1)经常应用与回归问题 5....(2)当使用sigmoid作为激活函数的时候,常用交叉熵损失函数而不用均方误差损失函数,因为它可以完美解决平方损失函数权重更新过慢的问题,具有“误差大的时候,权重更新快;误差小的时候,权重更新慢”的良好性质
用户可以通过编写PyTorch函数来指定约束,Pylon将这些函数编译成可微分的损失函数,使得模型在训练过程中不仅拟合数据,还能满足特定的约束条件。...约束函数的关键特点包括: 1、参数:约束函数接受一个或多个张量(Tensor)作为输入参数,这些张量代表了模型的输出,如实体分类器或关系分类器的解码结果。...4、可微分:在Pylon框架中,约束函数被编译成可微分的损失函数,这样可以通过标准的梯度下降算法来优化模型参数,以最大化满足约束的概率。...6、灵活性:用户可以利用PyTorch和Python的全部语法灵活性来定义约束,使得表达各种复杂的领域知识成为可能。 Pylon会将其整合到模型的损失函数中,从而在训练过程中强制执行这一规则。...9、尾部风险管理:Pylon可以用来实施约束,以管理投资组合的尾部风险,如通过限制高波动性股票的权重来减少极端市场情况下的潜在损失。
大家好,我还在坚持继续写,如果我没有记错的话,这个是系列文章的第十五篇,pytorch中有很多非常方便使用的损失函数,本文就演示了如何通过多标签损失函数训练验证码识别网络,实现验证码识别。...结构,我实现了一个比较简单的残差网络,最后加一个全连接层输出多个标签。...out = x.view(-1, 4 * 256) 22 out = self.fc_layers(out) 23 return out 模型训练与测试 使用多标签损失函数...model.parameters(), lr=0.001) 16optimizer = torch.optim.Adam(model.parameters(), lr=1e-2) 17model.train() 18 19# 损失函数...51 train_loss = train_loss / num_train_samples 52 53 # 显示训练集与验证集的损失函数 54 print('Epoch: {} \
一般来说,我们在进行机器学习任务时,使用的每一个算法都有一个目标函数,算法便是对这个目标函数进行优化,特别是在分类或者回归任务中,便是使用损失函数(Loss Function)作为其目标函数...损失函数是用来评价模型的预测值Y^=f(X)与真实值Y的不一致程度,它是一个非负实值函数。通常使用L(Y,f(x))来表示,损失函数越小,模型的性能就越好。...那么总的损失函数为:(X,Y)=(xi,yi) L=∑i=1Nℓ(yi,yi^) 常见的损失函数ℓ(yi,yi^)有一下几种: Zero-one Loss Zero-one Loss:即0-1损失,它是一种较为简单的损失函数...因此log类型的损失函数也是一种常见的损失函数,如在LR(Logistic Regression, 逻辑回归)中使用交叉熵(Cross Entropy)作为其损失函数。即: ? 规定: ?...其中λ是正则项超参数,常用的正则方法包括:L1正则与L2正则,详细介绍参见:防止过拟合的一些方法。 各损失函数图形如下: ?
可视化损失函数的示例 首先介绍一下visdom中的line()函数: 1) 画一条直线 from visdom import Visdomimport numpy as npviz = Visdom(env...np.array([x]), Y=np.array([y]), win=win,#win要保持一致 update='append') 最后是深度学习训练过程中的损失函数可视化...,参考的是pytorch实战指南里的可视化操作。...将损失函数的可视化放在visual_loss.py文件: #coding:utf8import visdomimport timeimport numpy as np class Visualizer(...torchnet'''训练前的模型、损失函数设置 vis = Visualizer(env='my_wind')#为了可视化增加的内容loss_meter = meter.AverageValueMeter
前言:损失函数是机器学习里最基础也是最为关键的一个要素,通过对损失函数的定义、优化,就可以衍生到我们现在常用的LR等算法中 本文是根据个人自己看的《统计学方法》《斯坦福机器学习课程》及日常工作对其进行的一些总结...,所以就定义了一种衡量模型好坏的方式,即损失函数(用来表现预测与实际数据的差距程度)。...于是乎我们就会想到这个方程的损失函数可以用绝对损失函数表示: image.png 假设我们再模拟一条新的直线:a0=8,a1=4 X 公式Y 实际Y 差值 1 12 13 -1 2 16 14 2 3...统计学习中常用的损失函数有以下几种: (1) 0-1损失函数(0-1 lossfunction): L(Y,f(X))={1,0,Y≠f(X)Y=f(X) (2) 平方损失函数(quadraticloss...logP(Y|X) 损失函数越小,模型就越好。 总结: 损失函数可以很好得反映模型与实际数据差距的工具,理解损失函数能够更好得对后续优化工具(梯度下降等)进行分析与理解。
很多都是相似的,这里以pytorch为例。...19种损失函数 1. L1范数损失 L1Loss 计算 output 和 target 之差的绝对值。...对于不平衡的训练集非常有效。 在多分类任务中,经常采用 softmax 激活函数+交叉熵损失函数,因为交叉熵描述了两个概率分布的差异,然而神经网络输出的是向量,并不是概率分布的形式。...所以需要 softmax激活函数将一个向量进行“归一化”成概率分布的形式,再采用交叉熵损失函数计算 loss。...也被称为 Huber 损失函数。
前言 最近在重温Pytorch基础,然而Pytorch官方文档的各种API是根据字母排列的,并不适合学习阅读。...仓库地址:https://github.com/TingsongYu/PyTorch_Tutorial 损失函数汇总 Pytorch中,有下列一些损失函数....,再计算其与 target 的交叉熵损失。...严格意义上的交叉熵损失函数应该是nn.NLLLoss()。 计算公式: 参数: weight(Tensor)- 为每个类别的 loss 设置权值,常用于类别不均衡问题。...此函数可以认为是 nn.CrossEntropyLoss 函数的特例。其分类限定为二分类,y 必须是{0,1}。还需要注意的是,input 应该为概率分布的形式,这样才符合交叉熵的应用。
而我们一般都是在衡量模型输出和真实标签的差异的时候,往往都直接成损失函数。但是我们得知道这哥仨不是一回事。我们下面看一下Pytorch中的损失函数的真实面目: ? 我们发现了啥?...而这里的相对熵不具备这样的对称性, 如果看过我写的生成对抗原理推导那篇博客的话,那里面也有 KL 散度这个概念,并且可以通过组合这个得到一个既能够衡量分布差异也有对称性的一个概念叫做 JS 散度。...3.2.1 还有几个交叉熵损失函数的特例 「1 nn.NLLoss」 在上面的交叉熵损失中,我们发现这个是softmax和NLLoss的组合,那么这里的nn.NLLLoss是何物啊?...「7 nn.MultiLabelMarginLoss」 功能:多标签边界损失函数, 这是一个多标签分类,就是一个样本可能属于多个类,和多分类任务还不一样。(多标签问题) ?...这个其实和多标签边界损失函数的原理差不多,只不过那里是一个样本属于多个类,需要每个类都这样算算,而这里一个样本属于 1 个类,只计算一次即可。
对比不同损失函数的优缺点及相关pytorch代码。...损失函数有许多不同的类型,根据具体模型和应用场景需要选择不同的损失函数,如何选择模型的损失函数,是作为算法工程师实践应用中最基础也是最关键的能力之一。...最近在学习pytorch的时候,参考了很多说明文档和优秀贴文,总结了如何针对应用场景选择合适损失函数、对比不同损失函数的优缺点及相关pytorch代码,用作学习记录,方便自己回顾。...内容包括: 基础知识(损失函数、训练目标、训练方法、pytorch) 回归模型损失函数 (MSE、MAE、Huber损失函数的优缺点,总结应用情形) 分类模型损失函数 (熵、最大似然) 一、基础知识...一文看懂各种神经网络优化算法 一般的损失函数的都是直接计算 batch 的数据,因此返回的 loss 结果都是维度为 batch_size的向量, 值得注意的是, pytorch中很多的损失函数都有
tensorflow和pytorch很多都是相似的,这里以pytorch为例。 19种损失函数 1. L1范数损失 L1Loss 计算 output 和 target 之差的绝对值。...对于不平衡的训练集非常有效。 在多分类任务中,经常采用 softmax 激活函数+交叉熵损失函数,因为交叉熵描述了两个概率分布的差异,然而神经网络输出的是向量,并不是概率分布的形式。...所以需要 softmax激活函数将一个向量进行“归一化”成概率分布的形式,再采用交叉熵损失函数计算 loss。...5 二进制交叉熵损失 BCELoss 二分类任务时的交叉熵计算函数。用于测量重构的误差, 例如自动编码机....也被称为 Huber 损失函数。
损失函数是模型优化的目标,所以又叫目标函数、优化评分函数,在keras中,模型编译的参数loss指定了损失函数的类别,有两种指定方法: model.compile(loss='mean_squared_error...或者 from keras import losses model.compile(loss=losses.mean_squared_error, optimizer='sgd') 你可以传递一个现有的损失函数名...,或者一个TensorFlow/Theano符号函数。...TensorFlow/Theano张量,其shape与y_true相同 实际的优化目标是所有数据点的输出数组的平均值。...,你的目标值应该是分类格式 (即,如果你有10个类,每个样本的目标值应该是一个10维的向量,这个向量除了表示类别的那个索引为1,其他均为0)。
领取专属 10元无门槛券
手把手带您无忧上云