不过今天我还是想介绍一下如何将 GPS 数据转换为行驶轨迹,推断某个时间点或时段车辆所在的位置,并判断车辆是否经过指定区域。
最近由于课题需要数据源,但是没有直接获取的方法,所以只能在周老师http://www.qianyi.info/的网站上自己下载深度图转换成点云数据,大概花了三天的时间,终于弄得差不多了,这里做个记录。
MDTraj是分子动力学模拟的一个python包,相对于MDAnalysis个人觉得操作性更强,更加Python范一些。其能够进行不同模拟软件的轨迹转换,常规计算,分析等等一体化。今天我们介绍其安装方法和简单使用。
目前主流的轻量化路面平整度检测技术方案为:使用车载加速度传感器采集车辆在路面上行驶时的竖向振动数据,并按照每100米计算竖向振动数据统计指标:均方根值RMS,并建立RMS与路面平整度指标:IRI之间的回归模型。检测前需要将车辆行驶至标准路段(即已知IRI真值的路段)上来回行驶对传感器进行标定,完成标定后驾驶车辆前往待检测路段进行平整度检测。
在这一系列的V-REP自学笔记中,我们定了一个小目标,完成一个Demo。使用官方提供的KUKA公司的YouBot机器人模型来实验机器人的感知和控制过程,控制机器人从A点抓取物品,然后移动到B点将物品放置在B点的工作台上,这其中涉及到V-REP环境中的机器人感知和控制过程。没有看过前期学习笔记的读者,可以在文末找到往期文章地址。
Argoverse数据集是由Argo AI、卡内基梅隆大学、佐治亚理工学院发布的用于支持自动驾驶汽车3D Tracking和Motion Forecasting研究的数据集。数据集包括两个部分:Argoverse 3D Tracking与Argoverse Motion Forecasting。
最近,张英峰博士发布了国产量子化学程序Amesp。为了进一步降低程序使用的门槛并弥补一些功能上的短板,我们尝试为Amesp增加一个接口程序——PyAmesp,通过ASE (Atomic Simulation Environment)调用Amesp进行理论计算,实现Amesp与ASE的集成与“联姻”。本文将给出PyAmesp的安装过程,并对ASE做简要介绍,随后展示利用ASE调用Amesp进行结构的优化与过渡态的计算。(注:本文适合具备一定Python和ASE基础的读者,如果您对ASE及其使用方法不熟悉,可以登录ASE官网https://wiki.fysik.dtu.dk/ase/获取更多信息。)
首先安装并打开猿如意 其次打开蓝桥云课ROS并加入课程 在猿如意输入问题得到答案 在蓝桥云课ROS验证 ---- 如何通过turtlesim入门ROS机器人 您可以通过以下步骤入门ROS机器人: 安装ROS:您需要安装ROS,可以在ROS官网上找到安装指南。 安装turtlesim:turtlesim是ROS中的一个仿真器,可以帮助您学习ROS的基础知识。您可以在终端中输入以下命令安装turtlesim: sudo apt-get install ros-<distro>-tur
除了使用 sys.exc_info() 方法获取更多的异常信息之外,还可以使用 traceback 模块,该模块可以用来查看异常的传播轨迹,追踪异常触发的源头。
尽管Stan提供了使用其编程语言的文档和带有例子的用户指南,但对于初学者来说,这可能是很难理解的。
作为菜鸟分析师一枚,日常工作中需要处理大量地理位置相关(如城市、辖区、街道、商场、楼宇等)数据。分析报告中总是用吐了的柱形图、条形图,不仅自己看着辣眼睛,老板也审美疲劳。
这篇文章分享了一个视频防抖的策略,这个方法同样可以应用到其他领域,比如常见的关键点检测,当使用视频测试时,效果就没有demo那么好,此时可以考虑本文的方法去优化。 分享这些demo并不一定所有人都会用到,但是在解决实际问题的时候,可以提供一个思路去解决问题。希望能给我一个三连,鼓励一下哈
本文是 Python 系列的 Cufflinks 补充篇。整套 Python 盘一盘系列目录如下:
本篇文章主要介绍如何使用pynmea2库解析传感器的GPS信号,以及如何使用folium库绘制GPS轨迹图。
Scipy 提供了强大的控制系统分析与设计工具,可以用于设计和分析线性时不变系统。本篇博客将深入介绍 Scipy 中的控制系统工具,并通过实例演示如何应用这些工具。
很多小伙伴们反馈,在web自动化的过程中,经常会被登录的验证码给卡住,不知道如何去通过验证码的验证。今天专门给大家来聊聊验证码的问题,一般的情况下遇到验证码我们可以都可以找开发去帮忙解决,关闭验证码,或者给一个万能的验证码!那么如果开发不提供帮助的话,我们自己有没有办法来处理这些验证码的问题呢?答案当然是有的,常见的验证码一般分为两类,一类是图文验证码,一类是滑动验证码!
分子动力学模拟(Molecule Dynamics Simulation,MD),本质上是一门采样技术。通过配置力场参数、拓扑结构和积分器,对一个给定的体系不断的采样,最终得到一系列的轨迹。那么得到分子动力学模拟的轨迹之后,如何使用后分析工具进行轨迹分析,也是一项很重要的工作。目前来说,基于Python的开源工具MDAnalysis(简称mda)是一个比较常用的MD后分析工具。本文主要介绍基于MindSponge分子动力学模拟框架生成了相应的轨迹之后,如何使用MDAnalysis工具进行分析。
所需安装包:ImageMagick(转换图片格式工具),graphviz(绘制图形工具)
根据复杂性和效率的不同,任何问题都具有一个或多个解决方案。目前智能停车系统的解决方案,主要包括基于深度学习实现,以及基于重量传感器、光传感器实现等。
在处理监督机器学习任务时,最重要的东西是数据——而且是大量的数据。当面对少量数据时,特别是需要深度神经网络的任务时,该怎么办?如何创建一个快速高效的数据管道来生成更多的数据,从而在不花费数百美元在昂贵
歪小王: 大家好!欢迎来到《趣玩 Python 基础》第三期,本期我们邀请到了 Number 三兄弟中的二弟,也是 int 老师的亲弟弟——Float 类型!掌声欢迎!
PythonRobotics 是用 Python 实现的机器人算法案例集合,该库包括了机器人设计中常用的定位算法、测绘算法、路径规划算法、SLAM、路径跟踪算法。 Github 地址: https://github.com/AtsushiSakai/PythonRobotics 需求 Python 3.6.x numpy scipy matplotlib pandas cvxpy 如何使用 安装所需的库 Clone 该库 在每个目录中执行 python 脚本 如果你喜欢这个库,请 star :)
您将学习如何使用Prophet(在R中)解决一个常见问题:预测公司明年的每日订单。
大数据时代到来,随着智能设备与物联网技术的普及,人在社会生产活动中会产生大量的数据。在我们的日常活动中,手机会记录下我们到访过的地点;在使用城市公交IC卡、共享单车等服务时,服务供应商会知道这些出行需求产生的时间与地点;公交车与出租车的定位信息,也可以告诉我们城市交通状态的具体情况。这些具备时间、空间与个体属性的数据能够为城市交通的智慧管控提供强有力的支持。
单细胞转录组数据分析在阐述多细胞生物发育与疾病进程方面已经开发了多种新的方法,如比较有名的轨迹推断(TI,trajectory inference)。但是,我们知道,各种轨迹推断方法只是一种利用表达量的排序手段而已,而且严重依赖先验的知识,如根节点的选择。有没有一种技术可以真正的在RNA转录的时候为转录的RNA打上时间的标签呢?
增强采样(Enhanced Sampling)是一种在分子动力学模拟中常用的技术,其作用是帮助我们更加快速的在时间轴上找到尽可能多的体系结构及其对应的能量。比如一个氢气的燃烧反应,在中间过程中会产生众多的反应产物,但是我们光从结果来看的话,就是从
基于 Frenet 坐标系的动作规划方法由于是由 BMW 的 Moritz Werling 提出的,为了简便,我们在后文中也会使用 Werling 方法简称。在讨论基于Frenet 坐标系的动作规划方法之前,我们首先得定义什么是最优的动作序列:对于横向控制而言,假定由于车辆因为之前躲避障碍物或者变道或者其他制动原因而偏离了期望的车道线,那么此时最优的动作序列(或者说轨迹)是在车辆制动能力的限制下,相对最安全,舒适,简单和高效的轨迹。
一提到特征工程,我们立即想到是表格数据。但是我们也可以得到图像数据的特征,提取图像中最重要的方面。这样做可以更容易地找到数据和目标变量之间的映射。
專 欄 ❈ treelake ,Python中文社区专栏作者。 博客地址: http://www.jianshu.com/u/66f24f2c0f36 ❈ 简述 极验验证码的主要问题在于对人的行为
双向脑机接口(BMIs)在大脑和外部世界之间建立了双向的直接通信链接。解码器将记录的神经活动转换为运动指令,编码器将从环境中收集的感觉信息直接传递给大脑,形成闭环系统。这两个模块通常集成在笨重的外部设备中。然而,对严重运动和感觉缺陷患者的临床支持需要紧凑、低功率和完全可植入的系统,该系统可以解码神经信号来控制外部设备。
專 欄 ❈Pytlab,Python 中文社区专栏作者。主要从事科学计算与高性能计算领域的应用,主要语言为Python,C,C++。熟悉数值算法(最优化方法,蒙特卡洛算法等)与并行化 算法(MPI,OpenMP等多线程以及多进程并行化)以及python优化方法,经常使用C++给python写扩展。 blog:http://ipytlab.com github:https://github.com/PytLab ❈— 前言 本文为作者对其开源项目VASPy的说明文章。VASPy是一个纯Python编写的处
既然ChatGPT如此擅长查询和整理资料,那么关于什么是单细胞测序的知识整理,ChatGPT会做的更好吗?我先给出来一个学徒的知识整理,借花献佛给大家。然后大家可以自己玩一下ChatGPT,看看能不能做出来如此出色的整理。
论文【1】中提出的自动驾驶决策系统(Decision-Making System)包含三层Behavior Planner:
图中线的两端是圆点或者菱形,旁边都有标注持仓证券商和相对应的持多仓数或持空仓数,且左右线颜色不同。画图思路大体就是:先画水平线图,再用 scatter 散点图画线左右两端的点,然后标注两端名称,以及标题和注解。
来源:大数据文摘本文约2000字,建议阅读5分钟800张图只要2分钟,程序已封装。 近日,根据复旦大学报道,学校信息科学与工程学院博士生李小康使用OCR和正则表达式帮助学院几分钟核查完数百人核酸完成截图,大大提高了核查效率和精度。 相关话题在知乎上也引起了众多讨论,目前该话题已经得到了300多万次浏览。 用OCR和正则表达式“防疫” 首先,我们需要简单介绍一些OCR。 OCR,英文全称Optical Character Recognition,即光学字符识别,也可简单地称为文字识别,这是文字自动输入的
NGS系列文章包括NGS基础、转录组分析 (Nature重磅综述|关于RNA-seq你想知道的全在这)、ChIP-seq分析 (ChIP-seq基本分析流程)、单细胞测序分析 (重磅综述:三万字长文读懂单细胞RNA测序分析的最佳实践教程 (原理、代码和评述))、DNA甲基化分析、重测序分析、GEO数据挖掘(典型医学设计实验GEO数据分析 (step-by-step) - Limma差异分析、火山图、功能富集)等内容。
本文的可视化大屏是利用帆软report大屏模板实现,知识点大致分为【Python可视化模块plotly实现航线轨迹地图】,【帆软网页框插件】,【利用js代码定时刷新】 三部分内容构成,希望能为读者在企业实践中提供一些思路。
揭秘Crashpad系统如何帮助Dropbox这样复杂的桌面程序捕获并报告崩溃,且兼容Python的多种语言。
前些天发现了一个风趣幽默的人工智能学习网站,通俗易懂,忍不住分享一下给大家。点击跳转到教程
appium有时候定位一个元素很难定位到,或者说明明定位到这个元素了,却无法点击,这个时候该怎么办呢? 求助大神是没用的,点击不了就是点击不了,appium不是万能的,这个时候应该转换思路,换其它的方法去点击,比如我们可以用adb去执行点击事件
Python程序的错误分两种。一种是语法错误(syntax error)。这种错误是语句的书写不符合Python语言的语法规定。第二种是逻辑错误(logic error)。这种错误是指程序能运行,但功能不符合期望,比如“算错了”的情形。
本文将介绍如何使用ONNX将PyTorch中训练好的模型(.pt、.pth)型转换为ONNX格式,然后将其加载到Caffe2中。需要安装好onnx和Caffe2。
如何安全有效的规划行驶路线,是自动驾驶汽车需解决的最大的难题之一。事实上,路径规划技术,现阶段是一个非常活跃的研究领域。路径规划之所以如此复杂,是因为其涵盖了自动驾驶的所有技术领域,从最基础的制动器,到感知周围环境的传感器,再到定位及预测模型等等。准确的路径规划,要求汽车要理解我们所处的位置以及周边的物体(其他车辆、行人、动物等)会在接下来的几秒钟内采取什么样的行为。另一项关键技术是轨迹生成器(trajectory generator),其产生输入路径规划算法的参考轨迹。
本文分享论文SceneTracker: Long-term Scene Flow Estimation Network,提出 SceneTracker,首个公开的(2024.03)有效解决在线 3D 点跟踪问题或长时场景流估计问题(LSFE)的工作。
大数据文摘出品 作者:Caleb 上海尚未解封。 4月9日,在上海市疫情防控工作新闻发布会上,上海市副市长、市疫情防控工作领导小组副组长宗明表示,3月1日以来,上海市已持续开展了多轮次核酸筛查或抗原检测。 自4月4日上海宣布进行全员核酸检测以来,截至4月8日24时,累计筛查约9527万人次,已完成检测的样本中累计检出阳性感染者9.44万余人。 面对如此数量的核酸报告,人工核查核酸报告费时费力,高压之下些许错误也无法避免,有什么更好的办法吗? 4月7日,根据复旦大学报道,学校信息科学与工程学院博士生李小康
首先在路径规划步骤中生成候选曲线,这是车辆可行驶的路径。使用成本函数对每条路径进行评估,该函数包含平滑度、安全性、与车道中心的偏离以及开发者想要考虑的其他任何因素。然后按成本对路径进行排名并选择成本最低的路径。
最近在研究动态障碍物避障算法,在Python语言进行算法仿真时需要实时显示障碍物和运动物的当前位置和轨迹,利用Anaconda的Python打包集合,在Spyder中使用Python3.5语言和matplotlib实现路径的动态显示和交互式绘图(和Matlab功能类似)。 Anaconda是一个用于科学计算的Python发行版,支持 Linux, Mac, Windows系统,提供了包管理与环境管理的功能,可以很方便地解决多版本python并存、切换以及各种第三方包安装问题。Anaconda利用工具
当程序出现错误时,系统会自动引发异常。除此之外,Python 也允许程序自行引发异常,自行引发异常使用 raise 语句来完成。
领取专属 10元无门槛券
手把手带您无忧上云