Python是一门富有魅力的编程语言,拥有丰富的功能和库,以及强大的社区支持。然而,有一些核心功能经常被忽视,而它们实际上可以极大地提高代码的质量、可读性和性能。
很多Python开发者在编写命令行工具时仍然使用sys.argv或自己编写的参数解析代码,但Python标准库中有一个强大的工具可以更轻松地处理命令行参数,那就是argparse库。它允许定义命令行选项、参数和子命令,自动生成帮助信息,还支持类型检查和默认值设置。
拥有八年经验的码农我来说,通过python写一些自动化脚本是很平常的事情,至于为什么大多数都是通过python语言来完成,想必和python易读性、丰富的库和跨平台特性让更多的人选择它 ,了解python爬虫的特性,才能更好的学习python爬虫。
本文整理了 26 个 Python 有用的技巧,将按照首字母从 A~Z 的顺序分享其中一些内容。
python之所以如此受欢迎的原因之一是因为它可读性和表现力强。 人们经常开玩笑说Python是“可执行伪代码”。但是,当你可以编写这样的代码时,很难用其他方式反驳:
Pandas是最著名的Python机器学习库之一。该库旨在用于数据分析和操作。此外,它很有用,因为它将一些 Python 最伟大和最值得信赖的库合并到一个包中。因此,它易于使用和应用。
Python 虽然是脚本语言,但是因为其易学,迅速成为科学家的工具,从而积累了大量的工具库、架构,人工智能涉及大量的数据科学,用 Python 是很自然的事。磨刀不误砍柴工,要入门人工智能领域,就必须掌握 Python。让我们来看看 Peter Gleeson 整理的 26 个 Python 有用的技巧。
【导读】Python 虽然是脚本语言,但是因为其易学,迅速成为科学家的工具,从而积累了大量的工具库、架构,人工智能涉及大量的数据科学,用 Python 是很自然的事。磨刀不误砍柴工,要入门人工智能领域,就必须掌握 Python。让我们来看看 Peter Gleeson 整理的 26 个 Python 有用的技巧。
Python 编程语言已经成为 IT 中使用的最流行的语言之一。成功的一个原因是它可以用来解决各种问题。从网站开发到数据科学、机器学习到任务自动化,Python 生态系统有丰富的框架和库。本文将介绍 Fedora 软件包集合中提供的一些有用的 Python shell 来简化开发。
为什么我喜欢Python?对于初学者来说,这是一种简单易学的编程语言,另一个原因:大量开箱即用的第三方库,正是23万个由用户提供的软件包使得Python真正强大和流行。
一门语言好用、方便的程度在很多时候会取决于这门语言相关的库够不够丰富,Python 之所以火爆除了其本身的语法和特性之外,还在一定程度上取决于其有太多太多库的支持,不论是官方维护的还是第三方开发的。就比如说做机器学习为什么很多人都用 Python,一个非常大的因素就是 TensorFlow 和 PyTorch 对 Python 的支持。当然在这里并不是说 Python 的库真的就全的不要不要的,它在某些领域或者项目的生态还是有待完善的。
曾几何时,我们中的一个人(Lacey)盯了一个多小时的 Python 文档中描述日期和时间格式化字符串的表格。当我试图编写从 API 中将日期时间字符串转换为 Python datetime 对象时,我很难理解其中的特定部分,因此我决定请求帮助。
每天使用Python是我内在工作的一部分。在这个过程中,我学会了一些有用的技巧和心得。
作为一名数据工作者,我们每天都在使用 Python处理大多数工作。在此过程中,我们会不断学到了一些有用的技巧和窍门。
对于初学者来说,这是一种简单易学的编程语言;另一个原因:大量开箱即用的第三方库,正是 23 万个由用户提供的软件包使得Python真正强大和流行。
除了将字符串转换为更有用的 Python 对象之外,还有许多库具有一些有用的方法和工具,可以让你更轻松地进行时间测试、将时间转换为不同的时区、以人类可读的格式输出时间信息,本文将介绍以下六个Python的时间日期库:
有很多不同的方法来安装matplotlib,最好的方法取决于你正在使用什么操作系统,你已经安装了什么,以及如何使用它。为了避免在此页面上浏览所有细节(和潜在的并发症),有几个方便的选择。
原文链接:https://medium.com/tech-explained/top-15-python-packages-you-must-try-c6a877ed3cd0
为什么我喜欢 Python ?对于初学者来说,这是一种简单易学的编程语言;另一个原因:大量开箱即用的第三方库,正是 23 万个由用户提供的软件包使得 Python 真正强大和流行。
对于初学者来说,这是一种简单易学的编程语言;另一个原因:大量开箱即用的第三方库,正是 23 万个由用户提供的软件包使得 Python 真正强大和流行
在这里,我在本文中简单介绍15 个好用到爆的 Python 实用技巧,如果你对其中一个或多个感兴趣,可以看一下,希望对你能有所帮助。
Requests——Kenneth Reitz写的最富盛名的http中oPython程序员都应该有它。
人们还经常把 Python 笑称为「可执行伪码(executable pseudocode)」。但是,当你可以编写这样的代码时,很难去反驳这种言论:
为什么Python被大家当作是作为入门的第一语言?不仅是因为它简单易学,还有一个原因就是:市面上有着大量开箱即用的第三方库,正是23万个由用户提供的软件包使得Python真正强大和流行。
谷歌的AI击败了一位围棋大师,是一种衡量人工智能突然的快速发展的方式,也揭示了这些技术如何发展而来和将来可以如何发展。 人工智能是一种未来性的技术,目前正在致力于研究自己的一套工具。一系列的进展在过去
Python是最好的编程语言之一,在科学计算中用途广泛:计算机视觉、人工智能、数学、天文等。它同样适用于机器学习也是意料之中的事。 当然,它也有些缺点;其中一个是工具和库过于分散。如果你是拥有unix思维(unix-minded)的人,你会觉得每个工具只做一件事并且把它做好是非常方便的。但是你也需要知道不同库和工具的优缺点,这样在构建系统时才能做出合理的决策。工具本身不能改善系统或产品,但是使用正确的工具,我们可以工作得更高效,生产率更高。因此了解正确的工具,对你的工作领域是非常重要的。 这篇文章的目的就是
最近一段时间Python已经成为数据科学行业中大火的编程语言,今天技术学派收集了一些较为高效的语言处理Python库。下面分享给大家。
Python是最好的编程语言之一,在科学计算中用途广泛:计算机视觉、人工智能、数学、天文等。它同样适用于机器学习也是意料之中的事。
很多伙伴们在学习Python的过程中,更倾向于在Github上寻找Python学习资料,今天就和大家分享Github上7个绝佳的Python编程学习的开源库:
我个人在尝试在我的Linux和Windows机器上安装Python时曾遇到过各种各样的问题。一般在出问题之前安装总是很顺利。出了问题之后要么是兼容性问题,要么是关于某种依赖性缺失的问题。
本文将介绍如何使用Python获取操作系统的相关信息。首先简要回答标题问题:通过使用Python的内置模块和第三方库,可以轻松获取操作系统的类型、版本、主机名、CPU架构等信息。
有许多安装 matplotlib 的不同方法,最好的方法取决于你使用的操作系统,已经安装的内容以及如何使用它。 为了避免涉及本页上的所有细节(和潜在的复杂性),有几个方便的选项。
Python现在非常火,语法简单而且功能强大,很多同学都想学Python!所以小的给各位看官们准备了高价值Python学习视频教程及相关电子版书籍,欢迎前来领取!
如果我们把互联网比作一张大的蜘蛛网,数据便是存放于蜘蛛网的各个节点,而爬虫就是一只小蜘蛛,
在信息爆炸的时代,新闻和舆情分析对于企业和个人来说都具有重要意义。而Python作为一门优秀的编程语言,非常适合用于构建强大的爬虫工具,并用于抓取和分析新闻数据。本文将分享使用Python爬虫抓取和分析新闻数据,并进行舆情分析的实战经验,帮助你掌握这一有用的技能。
从Python菜鸟到Python Kaggler的旅程(译注:Kaggle是一个数据建模和数据分析竞赛平台) 假如你想成为一个数据科学家,或者已经是数据科学家的你想扩展你的技能,那么你已经来对地方了。本文的目的就是给数据分析方面的Python新手提供一个完整的学习路径。该路径提供了你需要学习的利用Python进行数据分析的所有步骤的完整概述。如果你已经有一些相关的背景知识,或者你不需要路径中的所有内容,你可以随意调整你自己的学习路径,并且让大家知道你是如何调整的。 步骤0:热身 开始学习旅程之前,先回答第一
SQLMap是一个自动化的SQL注入工具,其主要功能是扫描、发现并利用给定URL的SQL注入漏洞。SQLMap内置了很多绕过插件,支持的数据库是MySQL、Oracle、PostgreSQL、Microsoft SQL Server、Microsoft Access、IBM DB2、SQLite、Firebird、Sybase和SAP MaxDB。SQLMap采用了以下五种独特的SQL注入技术。
译者:Allen 从Python菜鸟到Python Kaggler的旅程(译注:Kaggle是一个数据建模和数据分析竞赛平台) 假如你想成为一个数据科学家,或者已经是数据科学家的你想扩展你的技能,那么你已经来对地方了。本文的目的就是给数据分析方面的Python新手提供一个完整的学习路径。该路径提供了你需要学习的利用Python进行数据分析的所有步骤的完整概述。如果你已经有一些相关的背景知识,或者你不需要路径中的所有内容,你可以随意调整你自己的学习路径,并且让大家知道你是如何调整的。 步骤0:热身 开始学习旅
作为一名数据科学家,使用Python称得上是我的家常便饭。一路走来,现在我已经搜集了不少有用的小技巧,是时候该把它们分享给大家了!
领取专属 10元无门槛券
手把手带您无忧上云