首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

优化算法之指数移动加权平均

▲计算加权移动平均法 ? ▲计算加权移动平均法 ? a 指 数 加 权 移 动 平 均 说了这么多那什么是指数加权移动平均呢?其实他也是加权移动平均的一种改进。...指数加权移动平均(Exponentially Weighted Moving Average),它是一种常用的序列处理方式。在 ? 时刻,他的移动平均值公式是: ? ? ,其中 ? 是 ?...值就知道他平均了多少天呢? ? b 指 数 移 动 加 权 平 均 的 理 解 我们使用 ? 来看看指数移动加权平均的原理是什么? ? ? ? ......所以在机器学习中大部分采用指数加权平均的方法计算平均值。 ?......这样的前期移动平均值并不能很好的估测温度。 引入偏差就是为了解决估测初期预测不准确的问题。那么如何去做呢? 指数加权平均公式: ? 带修正偏差的指数加权平均公式: ? 当t=2的时候, ?

2.3K10

指数加权平均

指数加权平均,是一种计算平均值的一种方法,起源于对伦敦气温的研究。 计算平均值最直观的方法,求和除以值的数目。比如求伦敦一个月的气温平均值,你把所有的温度加起来除以一个月的天数即可。...下面我们介绍另一种求每一天平均气温的方法,即指数加权平均。...指数加权平均计算方法 Vt=βVt−1+(1−β)θtV_{t}=\beta V_{t-1}+(1-\beta)\theta_{t}Vt​=βVt−1​+(1−β)θt​ VtV_{t}Vt​表示计算的当天平均气温...VtV_{t}Vt​即计算的当天平均气温,β\betaβ取0.9时,它近似了11−β=10\frac{1}{1-\beta}=101−β1​=10 天的平均气温。 如何理解 ?...指数加权平均占用很少一部内存,并且实现起来只需要一两行代码,在数据量很大的时候优势明显。

1.2K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    深度学习优化算法中指数加权平均

    什么是指数加权平均 在深度学习优化算法(如Momentum、RMSprop、Adam)中,都涉及到指数加权平均的概念,它是一种常用的序列数据处理方式。...它的计算公式如下: 其中 为t时刻的实际观察值; 是t时刻的指数加权平均值;γ是历史数据的权重,是可调节的超参, 指数加权平均,作为原数据的估计值,它通过引入历史数据,在平滑短期波动的同时, 也将数据的长期趋势刻画出来...指数加权平均为什么可以平滑波动 展开计算 取 可以看到,加权系数是随着时间以指数形式递减的,时间越近,权重越大,时间越远,权重越小。...如上图所示,是一个温度的指数加权平均的示例,蓝色的点是每天的温度值。...当 时,指数加权平均的结果如图绿色线所示; 当 时,指数加权平均的结果如下图黄色线所示; γ值越小,曲线波动越大 γ值越大,曲线波动越小,但同时变化相对于数据变化趋势也有滞后。

    61250

    深度学习算法优化背景知识---指数加权平均

    背景:在深度学习优化算法,如:Momentum、RMSprop、Adam中都涉及到指数加权平均这个概念。...为了系统的理解上面提到的三种深度学习优化算法,先着重理解一下指数加权平均(exponentially weighted averages) 定义 指数移动平均(EMA)也称为指数加权移动平均(EWMA...),是一种求平均数的方法,应用指数级降低的加权因子。.... + 0.1*0.9^{99}\theta_1\) 可以看出:各个记录前的权重系数是以指数级下降的,但不为0。所以这种平均值的求解方法称为指数加权平均 。 温度平均值变化图: ?...在优化算法中,\(\frac{1}{1-\beta}\) 可以粗略表示指数加权平均考虑的样本数[由于随着样本容量t的逐渐增多,其系数指数下降,对平均值的贡献程度逐渐降低;影响平均值计算的几个关键样本就是最近几天的样本值

    66230

    为什么在优化算法中使用指数加权平均

    本文知识点: 什么是指数加权平均? 为什么在优化算法中使用指数加权平均? β 如何选择? ---- 1....什么是指数加权平均 指数加权平均(exponentially weighted averges),也叫指数加权移动平均,是一种常用的序列数据处理方式。 它的计算公式如下: ?...指数加权平均,作为原数据的估计值,不仅可以 1. 抚平短期波动,起到了平滑的作用,2. 还能够将长线趋势或周期趋势显现出来。...为什么在优化算法中使用指数加权平均 上面提到了一些 指数加权平均 的应用,这里我们着重看一下在优化算法中的作用。...这里可以看出,V_t 是对每天温度的加权平均,之所以称之为指数加权,是因为加权系数是随着时间以指数形式递减的,时间越靠近,权重越大,越靠前,权重越小。 ?

    1.9K10

    如何用DAX实现降噪加权移动平均

    移动平均,大家都清楚了,但是降噪,加权后再移动平均,将移动平均的能力推向了更高境界。 什么是降噪加权移动平均 对于一堆点,可以通过移动平均观察其趋势,如下: 可以看出: 有些点距离中间区域太远。...移动平均线如果全部考虑所有点,会被拉扯。 对此,我们希望把周围太远的点过滤掉,于是就有了: 通过调节降噪区滑杆,将实现: 周围外侧的点被排除。 移动平均的计算仅仅考虑绿色部分的点。...移动平均也更加平滑。 实现方案 以下给出 DAX 相关计算。...,其中: 给出了移动平均的框架。...总结 如果你具有复杂而真实的业务数据,有很多时候是有实际干扰的,例如:活动,促销以及客户导入等操作,通过本案例的降噪加权移动平均,可以比移动平均更加巧妙地计算多个点的实际趋势。

    90530

    第二章 2.3-2.5 带修正偏差的指数加权平均

    [DeeplearningAI 笔记]第二章 2.3-2.5 带修正偏差的指数加权平均 ❝吴恩达老师课程原地址[1] ❞ 2.3 指数加权平均 举个例子,对于图中英国的温度数据计算移动平均值或者说是移动平均值...50 天内的指数加权平均,「这时我们用图中的绿线表示指数加权平均值」 ?...「在统计学中,它常被称为指数加权移动平均值」 2.4 理解指数加权平均 「公式」: 为 0.9 时,得到的是「红线」, 为 0.98,得到的是「绿线」, 为 0.5 时,得到的是「黄线」....所以在机器学习中大部分采用指数加权平均的方法计算平均值.」 2.5 指数加权平均的偏差修正 当我们取 时,实际上我们得到的不是绿色曲线,而是紫色曲线,因为使用「指数加权平均」的方法「在前期会有很大的偏差...「指数加权平均公式」: 「带修正偏差的指数加权平均公式」: ?

    1.3K30

    深层神经网络参数调优(三) ——mini-batch梯度下降与指数加权平均

    深层神经网络参数调优(三)——mini-batch梯度下降与指数加权平均 (原创内容,转载请注明来源,谢谢) 一、mini-batch梯度下降 1、概述 之前提到的梯度下降,每优化一次的w和b,都要用到全部的样本集...二、指数加权平均 1、概述 指数加权平均(exponentiallyweighted averages),是一种计算平均值的方式,这个本身不是用来做神经网络的优化,但是其思想在后面学到其他的梯度下降方式的时候...当计算的平均的数多了,由于慢慢的数值加回去了,故会逐渐消除了这个影响。 因此,偏差纠正的目的,在于纠正刚开始一些平均值计算不准确的问题。...6、优点 指数加权平均,最大的有点在于节约存储,且速度较快,因为计算前t个值的平均值,其只关心t-1个值的平均值,以及第t个数的数值。...另外指数加权平均,我还没学到后面的课程,但是我个人认为,这个快速计算平均值的特性,应该可以用到后面计算代价函数上。因为代价函数也是要计算m个数的损失函数的均值。

    2.4K40

    股票和数据分析--加权平均

    借着指数良好的上涨势头,和大家聊一下加权平均数和基金定投的关系。 加权平均数即将各数值乘以相应的权数,然后加总求和得到总体值,再除以总的单位数。...加权平均值的大小不仅取决于总体中各单位的数值(变量值)的大小,还取决于各数值出现的次数,由于各数值出现的次数对其在平均数中的影响起着权衡轻重的作用,因此叫做权数。...因为加权平均值是根据权数的不同进行的平均数的计算,所以又叫加权平均数。 如图所示,若n个数 ? 的权分别是 ? 那么 ? 叫做这n个数的加权平均数。 下面通过基金定投为例,聊聊加权平均数的作用。...= (x1*w1+x2*w2+x3*w3+x4*w4+x5*w5)/(w1+w2+w3+w4+w5)= 0.75 4、收益=当前价格/加权平均单价 - 1 = 1/0.75 - 1 = 33% 收益满满...2、在指数一路上涨过程中,发现账面盈利不错,头脑发热,又追加了很多钱,结果指数回调的时候,懊恼的想要剁手,盲目停止定投,甚至赎回,两边打脸。

    90320

    AVERAGEX函数丨移动平均

    涉及到的相关知识介绍完毕,编写如下代码: 基础代码: 销售 = SUM ( '示例'[销售金额] ) 移动平均代码: 移动平均 = AVERAGEX ( DATESINPERIOD ( '日期表'[Date...], MAX ( '日期表'[Date] ), -7, DAY ), [销售] ) 放入折线图中进行对比: [1240] 这样的话就求出来7天的移动平均值了。...这里解释一下代码含义: DATESINPERIOD函数在这里是选定最新日期,向前移动7天。每7天算作一组。 销售是为每组时间段匹配相关计算值。 AVERAGEX函数求出每组销售的算数平均值。...修改刚才的公式如下: 移动平均2 = AVERAGEX ( DATESINPERIOD ( '日期表'[Date], MAX ( '日期表'[Date] ), - [移动平均 值], DAY )..., [销售] ) 放在折线图中对比,结果如图: [strip] 图中黄线是之前写的代码;红线是移动平均

    82140

    14款机器学习加权平均模型融合的火花

    本文是受快照集成的启发,把 titu1994/Snapshot-Ensembles 项目中,比较有意思的加权平均集成的内容抽取出来,单独应用。 ?...两套模型的训练与基本信息准备 3、观察14套模型的准确率与召回率 4、刻画14套模型的calibration plots校准曲线 5、14套模型的重要性输出 6、14套模型的ROC值计算与plot 7、加权模型融合数据准备...8、基准优化策略:14套模型融合——平均 9、加权平均优化策略:14套模型融合——加权平均优化 可以观察到基准优化策略:14套模型融合——平均的结果为: >>> Accuracy : 79.7 >...加权平均优化策略:14套模型融合——加权平均优化 >>> Best Accuracy : 90.4 >>> Best Weights : [1.57919854e-02 2.25437178e-02...,要高于平均水平很多。

    1.2K30

    Python中TensorFlow的长短期记忆神经网络(LSTM)、指数移动平均法预测股票市场和可视化

    下面看两种平均技术;标准平均法和指数移动平均法。你将对这两种算法产生的结果进行定性(目测)和定量(平均平方误差)的评估。...,xt)(例如之前的100天)内先前观察到的股票市场价格的平均值。此后,尝试更高级的 "指数移动平均 "方法,看看它的效果如何。然后,进入长短期记忆模型 首先,正常的平均数。...接下来,使用指数移动平均线。 指数移动平均线 你可能已经在互联网上看到一些文章,使用非常复杂的模型,并预测了几乎准确的股票市场行为。但是请注意! 这些只是视觉上的错觉,并不是由于学到了有用的东西。...你将在下面看到如何用一个简单的平均法来复制这种行为。 在指数移动平均法中,你计算xt+1为。 其中 和 是在一段时间内保持的指数移动平均数值。....上述公式基本上是计算t+1时间步长的指数移动平均线,并将其作为超前一步的预测。γ决定最近的预测对EMA的贡献是什么。例如,γ=0.1只能得到当前值的10%进入EMA。

    1.4K30

    Python实现股价的简单移动平均值(SMA)

    前不久收到清华大学出版社赠送的《深入浅出Python量化交易实战》一书,也答应了出版社要写一些读书笔记,今天就来交作业了。...根据书中的内容,我自己也做了一点改进的工作——用Python绘制出股价的5日均线和20日均线。众所周知,5日均线是短线交易的生死线,而20日均线是中长线趋势的分水岭。....plot(ax=ax1, color='b', lw=2., legend=True) plt.grid() plt.show() 这样就可以直观看到图像: 这样就可以根据不同周期的均线来设计移动平均策略了...如果大家对类似的内容感兴趣,不妨也阅读一下这本《深入浅出Python量化交易实战》。我个人感觉跟着代码敲一敲,自己动手改进一下,还是很有乐趣的。

    2.6K20
    领券