最后手写python代码实现卷积过程,让Tensorflow卷积在我们面前不再是黑箱子!...1 Tensorflow卷积实现原理 先看一下卷积实现原理,对于in_c个通道的输入图,如果需要经过卷积后输出out_c个通道图,那么总共需要in_c * out_c个卷积核参与运算。...image.png 2 手写Python代码实现卷积 自己实现卷积时,就无须将定义的数据[c,h,w]转为[h,w,c]了。...3 小结 本文中,我们学习了Tensorflow的卷积实现原理,通过也通过python代码实现了输出通道为1的卷积,其实输出通道数不影响我们学习卷积原理。...后面如果有机会的话,我们去实现一个更加健全,完整的卷积。
文章目录 调用tf.nn.conv2d()实现卷积 自己实现卷积函数 我们知道,tensorflow里面自带卷积函数,tf.nn.conv2d()就可以实现相关功能,本文主要是自己实现卷积操作,然后和...调用tf.nn.conv2d()实现卷积 首先是调用卷积函数实现卷积操作: 这里说明一下conv2d的定义及参数含义: 参考 【定义:】 tf.nn.conv2d (input, filter,...是卷积核数量。...print(y.shape) #(1,3,3,1) print(y) #因为y有四维,输出太长了,我就只写一下中间两维的结果(3*3部分):[[4,3,4],[2,4,3],[2,3,4]] 自己实现卷积函数...下面我们自己实现一个卷积操作,就不care batch和channel那两维了,直接拿中间的二维为例。
在卷积神经网络中,才用卷积技术实现对图片的降噪和特征提取。 一般我们构建卷积神经网络都是使用成熟的框架,今天我就来自己实现一下卷积,并使用不同的卷积核来看看效果。...卷积操作的原理可以由下图表示: 一个3*3的卷积核,以滑动窗口的形式在图片上滑动,每滑动一次,就计算窗口中的数据的加权之和,权值就是卷积核的数据。 通过这个过程将图片进行转化。...,img_new记录每一行卷积后的数据,形成新的图片 下面来看一看卷积结果: img_new = convolution(k, data)#卷积过程 #卷积结果可视化 plt.imshow(img_new..., cmap='gray') plt.axis('off') 因为卷积结果和卷积核有密切关系,虽然上图看上去没他大的区别,那是因为卷积核的关系。...通过卷积后的图片,大小变化了,可以使用零填充技术使得输出图片和原图片大小一致,这里就不实现了,本文主要是实现卷积过程。
GraphConvolution(nn.Module): def __init__(self, input_dim, output_dim, use_bias=True): """图卷积
上一篇文章已经介绍过卷积的实现,这篇文章我们学习反卷积原理,同样,在了解反卷积原理后,在后面手写python代码实现反卷积。....^#)…. 2 代码实现 上一篇文章我们只针对了输出通道数为1进行代码实现,在这篇文章中,反卷积我们将输出通道设置为多个,这样更符合实际场景。...具体实现代码如下: #根据输入map([h,w])和卷积核([k,k]),计算卷积后的feature map import numpy as np def compute_conv(fm,kernel)...为了验证实现的代码的正确性,我们使用tensorflow的conv2d_transpose函数执行相同的输入和卷积核,看看结果是否一致。...对比结果可以看到,数据是一致的,证明前面手写的python实现的反卷积代码是正确的。
在数字信号处理中经常会用到卷积计算,例如各种滤波器的设计。...两个序列的卷积计算大体需要3步: 1)翻转其中一个序列; 2)移动翻转后的序列,并计算每次移动后两个序列的重叠面积; 3)重复第2步,直至两个序列没有重叠部分。...def conv(lst1, lst2): '''用来计算两个列表所表示的信号的卷积,返回一个列表''' result = [] #翻转第一个列表 lst1.reverse...zip(lst1,t))) result.append(v) return result print(conv([1, 2, 3], [4, 5])) 当然,上面的代码主要是演示卷积的原理...,在真正使用时,可以直接使用Python扩展库numpy和scipy来实现,例如下面的代码: >>> import numpy as np >>> import scipy.signal >>> x =
这篇文章介绍如何使用Michael Nielsen 用python写的卷积神经网络代码,以及比较卷积神经网络和普通神经网络预测的效果。 这个例子是经典的识别MNIST手写体的AI程序。...至于卷积神经网络的原理,我以后会单独写一篇文章介绍。...pip install Theano 下载 代码 git clone https://github.com/mnielsen/neural-networks-and-deep-learning.git 卷积神经网络在...self.poolsize, ignore_border=True) pooled_out = pool_2d(input=conv_out, ws=self.poolsize, ignore_border=True) 进入python...相关文章 卷积神经网络的原理
本文由腾讯云+社区自动同步,原文地址 https://stackoverflow.club/article/implement_neural_network_using_python/ P39 为了优化这么多参数...,训练集必须很大,和参数数量在一个数量级上 P54 一般采用多次随机初始化参数,观察损失值分布,如果方差较小,说明网络规模较大;如果方差过大,说明网络规模过小,需要增加网络规模 P92 VGG是简单的卷积层
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride、padding)的具体实现:https:...//www.cnblogs.com/xiximayou/p/12706576.html 激活函数的实现(sigmoid、softmax、tanh、relu、leakyrelu、elu、selu、softplus.../xiximayou/p/12713081.html 损失函数定义(均方误差、交叉熵损失):https://www.cnblogs.com/xiximayou/p/12713198.html 优化器的实现...(SGD、Nesterov、Adagrad、Adadelta、RMSprop、Adam):https://www.cnblogs.com/xiximayou/p/12713594.html 卷积层反向传播过程....html 批量归一化层实现:https://www.cnblogs.com/xiximayou/p/12720211.html 池化层实现:https://www.cnblogs.com/xiximayou
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride、padding)的具体实现:https:...//www.cnblogs.com/xiximayou/p/12706576.html 激活函数的实现(sigmoid、softmax、tanh、relu、leakyrelu、elu、selu、softplus...(SGD、Nesterov、Adagrad、Adadelta、RMSprop、Adam):https://www.cnblogs.com/xiximayou/p/12713594.html 卷积层反向传播过程....html 批量归一化层实现:https://www.cnblogs.com/xiximayou/p/12720211.html 池化层实现:https://www.cnblogs.com/xiximayou.../p/12720324.html padding2D实现:https://www.cnblogs.com/xiximayou/p/12720454.html Flatten层实现:https://www.cnblogs.com
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride、padding)的具体实现:https:...(SGD、Nesterov、Adagrad、Adadelta、RMSprop、Adam):https://www.cnblogs.com/xiximayou/p/12713594.html 卷积层反向传播过程....html 批量归一化层实现:https://www.cnblogs.com/xiximayou/p/12720211.html 池化层实现:https://www.cnblogs.com/xiximayou.../p/12720324.html padding2D实现:https://www.cnblogs.com/xiximayou/p/12720454.html Flatten层实现:https://www.cnblogs.com...层实现:https://www.cnblogs.com/xiximayou/p/12720589.html 之前就已经定义过了各种激活函数的前向和反向计算,这里只需要将其封装成类。
关于卷积操作是如何进行的就不必多说了,结合代码一步一步来看卷积层是怎么实现的。...最后就是卷积层的实现了: 首先有一个Layer通用基类,通过继承该基类可以实现不同的层,例如卷积层、池化层、批量归一化层等等: class Layer(object): def set_input_shape...,如果没有实现使用raise NotImplementedError()抛出异常。...接着就可以基于该基类实现Conv2D了: class Conv2D(Layer): """A 2D Convolution Layer....:params=卷积核高×卷积核宽×通道数目×卷积核数目+偏置项(卷积核数目) 卷积之后图像大小计算公式: 输出图像的高=(输入图像的高+padding(高)×2-卷积核高)/步长+1 输出图像的宽=
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride、padding)的具体实现:https:....html 批量归一化层实现:https://www.cnblogs.com/xiximayou/p/12720211.html 池化层实现:https://www.cnblogs.com/xiximayou...python setup.py install 最后输入: !...python mlfromscratch/examples/convolutional_neural_network.py 最终结果: +---------+ | ConvNet | +--------...至此,结合代码一步一步看卷积神经网络的整个实现过程就完成了。通过结合代码的形式,可以加深对深度学习中卷积神经网络相关知识的理解。
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride、padding)的具体实现:https:...//www.cnblogs.com/xiximayou/p/12706576.html 激活函数的实现(sigmoid、softmax、tanh、relu、leakyrelu、elu、selu、softplus.../xiximayou/p/12713081.html 损失函数定义(均方误差、交叉熵损失):https://www.cnblogs.com/xiximayou/p/12713198.html 优化器的实现...(SGD、Nesterov、Adagrad、Adadelta、RMSprop、Adam):https://www.cnblogs.com/xiximayou/p/12713594.html 卷积层反向传播过程...:https://www.cnblogs.com/xiximayou/p/12713930.html 全连接层实现代码: class Dense(Layer): """A fully-connected
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride、padding)的具体实现:https:...//www.cnblogs.com/xiximayou/p/12706576.html 激活函数的实现(sigmoid、softmax、tanh、relu、leakyrelu、elu、selu、softplus.../xiximayou/p/12713081.html 损失函数定义(均方误差、交叉熵损失):https://www.cnblogs.com/xiximayou/p/12713198.html 优化器的实现...(SGD、Nesterov、Adagrad、Adadelta、RMSprop、Adam):https://www.cnblogs.com/xiximayou/p/12713594.html 卷积层反向传播过程.... / accum_grad_col.shape[0] * accum_grad return accum_grad_col 需要注意的是池化层是没有可学习的参数的(如果不利用带步长的卷积来代替池化的作用
卷积 在深度学习里CNN卷积神经网络是最常见的概念,可以算AI届的hello world了。...本文就不从理论上详细介绍卷积了,程序员就要有程序员的亚子,所以我直接上代码介绍怎么用numpy实现卷积。...numpy实现卷积 基础定义 以CV中对图像卷积为例,图像卷积一般都是 输入:四维数组[B,H,W,C_in] 卷积核:四维数组[C_in,K,K,C_out] 输出:四维数组[B,H2,W2,C_out...在卷积时还有stride等概念,本文设置stride=1,因为理解了本文代码后,其他情况完全可以方便实现。...单个核卷积单通道 首先我们从低维入手,图片张数为1,单个卷积核,单个通道输入: 输入—[H,W] 卷积核—[K,K] 输出—[H2,W2] 也就是下图过程: ?
在上一篇我们了解了卷积的概念,并且使用numpy实现了卷积。...但是现在其实很少会需要自己去实现卷积操作了,因为很多深度学习框架已经很好的封装了基础API甚至封装好了网络模型,比如tensorflow,pytorch,caffe等等。...今天我们就使用tensorflow来实现卷积,顺便和我们自己实现的卷积结果对比,验证我们的实现是否正确。...tensorflow实现卷积 API介绍 tensorflow是一个数据流图,tf基础使用后面有时间会再从基础进行介绍,今天直接上卷积的使用了,主要用到的API就是tf.nn.conv2d 对参数进行简单介绍...可以看到两个结果一致~ OK,通过两篇文章的介绍,相信对卷积的实现有很好的理解了。在理解的基础才能更好的去使用各种框架的封装接口。
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride、padding)的具体实现:https:...//www.cnblogs.com/xiximayou/p/12706576.html 激活函数的实现(sigmoid、softmax、tanh、relu、leakyrelu、elu、selu、softplus.../xiximayou/p/12713081.html 损失函数定义(均方误差、交叉熵损失):https://www.cnblogs.com/xiximayou/p/12713198.html 优化器的实现...这里我们以一个卷积层+全连接层+损失函数为例。网络前向传播完之后,最先获得的梯度是损失函数的梯度。...然后将损失函数的梯度传入到全连接层,然后获得全连接层计算的梯度,传入到卷积层中,此时调用卷积层的backward_pass()方法。
文章目录 一、卷积计算原理 二、卷积计算 1、计算 y(0) 2、计算 y(1) 3、计算 y(2) 三、使用 matlab 计算卷积 四、使用 C 语言实现卷积计算 一、卷积计算原理 ---- 对于...n-m) = x(n) * h(n) 线性时不变系统 ( LTI - Linear time-invariant ) 的 " 输出序列 " 等于 " 输入序列 " 与 " 系统单位脉冲响应 " 的 线性卷积...; 输出序列 的元素个数 : 输出序列元素个数 = 输入序列元素个数 + 单位脉冲响应序列元素个数 - 1 二、卷积计算 ---- 给定 输入序列 : x(n) = \{1,2\}_{[0, 1]}...单位脉冲响应 : h(n) = \{1,2\}_{[0, 1]} 计算卷积 : x(n) * h(n) ; 卷积结果序列对应的元素个数是 2 + 2 - 1 = 3 根据如下 卷积 公式 : y...- matlab 源码 : x = [1, 2]; h = [1, 2]; y = conv(x, h); 最终计算结果 : y(n) = \{1,4,4\}_{[0,2]} 四、使用 C 语言实现卷积计算
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride、padding)的具体实现:https:...//www.cnblogs.com/xiximayou/p/12706576.html 激活函数的实现(sigmoid、softmax、tanh、relu、leakyrelu、elu、selu、softplus.../xiximayou/p/12713081.html 损失函数定义(均方误差、交叉熵损失):https://www.cnblogs.com/xiximayou/p/12713198.html 优化器的实现...(SGD、Nesterov、Adagrad、Adadelta、RMSprop、Adam):https://www.cnblogs.com/xiximayou/p/12713594.html 卷积层反向传播过程...:https://www.cnblogs.com/xiximayou/p/12713930.html 全连接层实现:https://www.cnblogs.com/xiximayou/p/12720017
领取专属 10元无门槛券
手把手带您无忧上云