窄带噪声、高斯噪声、白噪声是噪声里经常听到几个词。先看一下大致定义: 高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声。...窄带噪声是指频带范围较窄的一类噪声,系统的频带宽度远远小于其中心频率的系统。 白噪声是指它的功率谱密度函数在整个频域内是常数,即服从均匀分布。...可以看出他们描述的属于不同的领域,高斯噪声是从概率方面描述,窄带是从带宽方面描述,白噪声是从功率方面描述。...高斯型白噪声也称高斯白噪声,是指噪声的概率密度函数满足正态分布统计特性,同时它的功率谱密度函数是常数的一类噪声。...还有一种窄带高斯白噪声,概率密度函数满足正态分布统计特性、功率谱密度函数是常数且频带宽度远远小于其中心频率的一类噪声,称作窄带高斯白噪声。
今天来给大家分享下怎么做图片的噪声去除。平时其实大家上网都能遇到这样的场景,就是输入讨厌验证码,怎么都输不对。验证码现在可以说是千奇百怪、分外妖娆,为啥要做成这样呢?.../usr/bin/python2.7 # -*- coding: utf-8 -*- from PIL import Image # 二值化处理 def two_value(): # 打开文件夹中的图片
在本教程中,你将学习Python中的白噪声时间序列。 完成本教程后,你将知道: 白噪声时间序列的定义以及为什么它很重要。 如何检查是否你的时间序列是白噪声。...用于识别Python中白噪声的统计和诊断图。 让我们开始吧。 ? 什么是白噪声时间序列? 时间序列可能是白噪声。时间序列如果变量是独立的且恒等分布的均值为0,那么它是白噪声。...白噪声时间序列的例子 在本节中,我们将使用Python创建一个高斯白噪声序列并做一些检查。它有助于在实践中创建和评估白噪声时间序列。...series.hist() pyplot.show() # autocorrelation autocorrelation_plot(series) pyplot.show() 总结 在本教程中,你发现了Python...原文:http://machinelearningmastery.com/white-noise-time-series-python/
例如: %高斯噪声为n(m)=nmr+jnmi,其中实虚部均为独立同分布N(0, a)的高斯随机数,信号x(m)=s(m) + n(m) % SNR = 10 lg[1/(2a)] =...a) (dB) [之所以是2a不是a是因为实虚部] %若有用信号s(n)的最大幅度am,要求得到的信噪比为p,则p=10log10[(am^2)/b^2],用这个公式反推出高斯 %噪声的方差
python数字图像处理-图像噪声与去噪算法 ?...图像噪声 椒盐噪声 概述: 椒盐噪声(salt & pepper noise)是数字图像的一个常见噪声,所谓椒盐,椒就是黑,盐就是白,椒盐噪声就是在图像上随机出现黑色白色的像素。...椒盐噪声是一种因为信号脉冲强度引起的噪声,产生该噪声的算法也比较简单。...(即白噪声), 且幅度服从高斯分布的噪声信号....代码 见https://github.com/wangshub/python-image-process
图像条纹噪声消除 条纹噪声 sensor中由于传感器的差异产生固定模式噪声(FPN),FPN与条纹噪声有相似之处。...条纹噪声(Stripe noise )是由于红外焦平面阵列(infrared focal plane array, IRFPA)中读出电路的不同而造成的。...目前的非均匀性矫正算法的缺点: 1、收敛速度慢 2、不能实时性处理 3、条纹噪声具有方向性(水平垂直)和贯穿性 预设条纹噪声模型 假设图像中像素(i, j)的值 z(i, j)表示为: z(i...;增益 A(i, j)表示固定模式噪声中的乘性分量;偏置分量 B(i, j)表示固定模式噪声中的加性分量。...图、imageJ软件处理步骤 损失了一部分细节,频域滤波器的参数可以精调 基于空域滤波 非均匀校正算法具有普遍性,对于条纹噪声,有时达不到满意的效果。
噪声检测 噪声检测方法 将噪声和信号区分开来是影响去噪效果好坏的重要因素之一。...1.1 常见的噪声检测方法 (1)开关阈值法 开关阈值判断法[1]基本思想是:该方法通过一定的规则将噪声点和信号点进行判断,区分成两种类别来控制开关单元。...(纯黑或纯白)的灰度值出现,在噪声点检测时,若灰度值在最大值和最小值的区间范围内,则判断该像素点为信号点,反之为噪声点。...极值判断法在一定程度上能区分噪声点和信号点,尤其椒盐噪声图像,且该方法不用设置阈值,传统的自适应中值去噪方法即采用的是极值法,但该方法对椒盐去噪时,邻域内的某些极值信号像素点在判断过程中易被误判为噪声点...该方法充分考虑到了椒盐噪声的特点,弥补了极值法的不足,提高了噪声点检测的准确性。但该方法仍需设置阈值。 参考文献: 1. Sun T, Neuvo Y.
图像噪声 噪声 加性噪声一般指热噪声、散弹噪声等,它们与信号的关系是相加,不管有没有信号,噪声都存在。 高斯白噪声包括热噪声和散粒噪声。...在通信信道测试和建模中,高斯噪声被用作加性白噪声以产生加性白高斯噪声。...加性高斯白噪声只是白噪声的一种,另有泊松白噪声等,加性高斯白噪声在通信领域中指的是一种各频谱分量服从均匀分布(即白噪声),且幅度服从高斯分布的噪声信号。...椒盐噪声 定义:椒盐噪声又称为双极脉冲噪声,这种噪声表现的特点是噪声像素的灰度值与邻域像素有着明显差异,而其余像素的灰度值保持不变,因此在图像中造成过亮或过暗的像素点。...如果一个噪声,它的幅度服从高斯分布,而它的功率谱密度又是分布均匀的,则称它为高斯白噪声。高斯白噪声的二阶矩不想关,一阶矩为常数,是指先后信号在时间上的相关性。高斯白噪声包括热噪声和散粒噪声。
白噪声检验也称为纯随机性检验, 当数据是纯随机数据时,再对数据进行分析就没有任何意义了, 所以拿到数据后最好对数据进行一个纯随机性检验 acorr_ljungbox(x, lags=None, boxpierce...由输出结果可以看到,不管是使用哪个统计量,p值都很大,所以该数据无法拒绝原假设,即认为该数据是纯随机数据 补充知识:用python实现时间序列单位根检验 在时间序列的建模中,需要先对数据进行平稳性检验,...以上这篇使用python实现时间序列白噪声检验方式就是小编分享给大家的全部内容了,希望能给大家一个参考。
python 代码: import cv2 as cv import numpy as np def add_salt_pepper_noise(image): h, w = image.shape
电阻是我们电子电路中最常见的基础元件之一,我们常听说电阻具有噪声,那么电阻的噪声是从哪里来的呢?...电阻的噪声通常指的热噪声,哪怕电阻没有连接到电路中,没有电流流过电阻,电阻两端也会有电压变化,这就是电阻热噪声,在系统工作频率范围内,电阻的热噪声可以认为是白噪声。...电阻两端开路时,它的热噪声有效值的计算公式是: k是玻尔兹曼常数,k=1.38*10-23 J/K,T是开尔文热力学温度,R是电阻值,B是系统等效噪声带宽。...根据公式我们可以看出来,电阻越大,噪声也越大,噪声随着电阻阻值的增加而增加。...同样的,噪声也与温度有关,毕竟这个噪声叫做热噪声,只是这个噪声对温度并不敏感,因为公式中是热力学温度,当温度变化为十几或几十摄氏度时,对噪声的影响并不是很大。
(一)python代码学习-数据处理图片加遮挡 ?...plt.subplot(122) plt.imshow(img2) plt.title("Add obstacle") plt.savefig("obstacle_image.jpg") pylab.show() (二)python...- 椒盐噪声(salt-and-pepper noise)是指两种噪声,一种是盐噪声(salt noise),另一种是胡椒噪声(pepper noise)。盐=白色(0),椒=黑色(255)。...前者是高灰度噪声,后者属于低灰度噪声。一般两种噪声同时出现,呈现在图像上就是黑白杂点。...Skimage读取图像是RGB,而Opencv是BGR Skimage读取图像后是(height, width, channel) (三)python代码学习-数据处理:数据加模糊 ?
程序开发中总会用到随机方法,一般的随机方法虽然通用,但是产生的随机数又因为过于"随机",不适合用来生成平滑连续的随机数据(譬如自然地形的高度),这个时候我们便需要使用特殊的随机方法了, Perlin 噪声便是一种能够产生平滑...Value 噪声 为了更容易的理解 Perlin 噪声,我们先从较简单的 Value 噪声看起: 首先我们考虑 一维 情况(即通过一维坐标来获取随机值),如果我们仅使用一般随机方法的话,得到的随机数值是这样的...至此,我们便得到了 一维 的 Value 噪声. 未完待续
Perlin 噪声 理解了二维的 Value 噪声,我们就可以进一步来看 二维的 Perlin 噪声了....二维 Perlin 噪声的生成方式和 二维 Value 噪声的生成方式大体相同,二维 Perlin 噪声也是根据给定的坐标选取对应的正方形,并将该正方形的四个顶点作为插值端点,但是在 Perlin 噪声中...(注:上图展示的是实际生成的二维 Perlin 噪声数据,显示上没有做额外的插值处理,所以看起来会有明显的边界) Simplex 噪声 Simplex 噪声是 Perlin 噪声的改进版,(二维)Perlin...这里有一份相关的代码实现,有兴趣的朋友可以看看~ 分形噪声 很多讲解 Perlin 噪声的文章也会提到 分形噪声,不过分形噪声本质上并不是某种特定类型的噪声(自然也不是 Perlin 噪声),而更应该说是一种噪声的叠加方法...,他是将很多个不同频率,不同振幅的基础噪声(譬如 Value噪声, Perlin噪声 等等)相互叠加,最后形成的一种噪声(统称为分形噪声).
1.什么是白噪声? 答:白噪声是指功率谱密度在整个频域内均匀分布的噪声。白噪声或白杂讯,是一种功率频谱密度为常数的随机信号或随机过程。...例如,热噪声和散弹噪声在很宽的频率范围内具有均匀的功率谱密度,通常可以认为它们是白噪声。 高斯白噪声的概念——."...信道中加性噪声的来源,一般可以分为三方面: 1)人为噪声:人为噪声来源于无关的其它信号源,例如:外台信号、开关接触噪声、工业的点火辐射等; 2 )自然噪声:自然噪声是指自然界存在的各种电磁波源,例如:闪电...某些类型的噪声是确知的。虽然消除这些噪声不一定很容易,但至少在原理上可消除或基本消除。另一些噪声则往往不能准确预测其波形。这种不能预测的噪声统称为随机噪声。我们关心的只是随机噪声。...3)起伏噪声:起伏噪声是以热噪声、散弹噪声及宇宙噪声为代表的噪声。这些噪声的特点是,无论在时域内还是在频域内他们总是普遍存在和不可避免的。
运用图形噪声,我们可以在3d场景中模拟它们,本文就带大家一起走进万能的图形噪声。...概述 图形噪声,是计算机图形学中一类随机算法,经常用来模拟自然界中的各种纹理材质,如下图的云、山脉等,都是通过噪声算法模拟出来的。...目前基础噪声算法比较主流的有两类:1. 梯度噪声;2....细胞噪声; 梯度噪声 (Gradient Noise) 梯度噪声产生的纹理具有连续性,所以经常用来模拟山脉、云朵等具有连续性的物质,该类噪声的典型代表是Perlin Noise。...噪声算法组合 前面介绍了两种主流的基础噪声算法,我们可以通过对多个不同频率的同类噪声进行运算,产生更为自然的效果,下图是经过分形操作后的噪声纹理。
=cv2.imread(path,1) img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) rows,cols=img.shape[:2] #添加噪声...plt.title('原始图像') plt.subplot(2,2,2),plt.axis('off'),plt.imshow(img_noise,plt.cm.gray),plt.title('加入噪声后图像...plt.savefig('C:/Users/xpp/Desktop/result.png') plt.show() put(r'C:/Users/xpp/Desktop/Lena.png') 算法:空域噪声滤波器是在待处理的图像中逐点地移动模板...空域噪声滤波器可以按照以下关系进行分类: 从数学形态上,空域噪声滤波器分为线性滤波器和非线性滤波器 从处理效果上,空域噪声滤波器分为平滑空间滤波器和锐化空间滤波器
高斯白噪声函数 高斯白噪声概念解释: 高斯白噪声(white Gaussian noise; WGN):均匀分布于给定频带上的高斯噪声 如果一个噪声,它的幅度服从高斯分布,而它的功率谱密度又是均匀分布的...,则称它为高斯白噪声。...高斯白噪声中的高斯是指:概率分布是正态函数,而白噪声是指:它的二阶矩不相关,一阶矩为常数,是指先后信号在时间上的相关性。这是考察一个信号的两个不同方面的问题。 热噪声和散粒噪声是高斯白噪声。...matlab高斯白噪声函数介绍:——wgn( )、awgn( ) WGN:产生高斯白噪声 y = wgn(m,n,p) 产生一个m行n列的高斯白噪声的矩阵,p以dBW为单位指定输出噪声的强度。...参考来源 matlab 中产生高斯白噪声 高斯白噪声及Matlab常用实现方法 关于dB 分贝 Matlab产生高斯白噪声 MATLAB产生特定功率谱密度的高斯白噪声的两种方法 版权声明:
python代码: import cv2 as cv import cv2 as cv import numpy as np def add_salt_pepper_noise(image):
假设对一定领域内的所有像素从小到大进行排序,如果存在孤立的噪声点,比如椒盐噪声(椒噪声——较小的灰度值,呈现的效果是小黑点;盐噪声——较大的灰度值,呈现的效果是小白点),那么从小到大排序的这个数组中,那些孤立的噪声一定会分布在两边...(要么很小,要么很大),这样子取出的中值点可以很好地保留像素信息,而滤除了噪声点的影响。...中值滤波器受滤波窗口大小影响较大,用于消除噪声和保护图像细节,两者会存在冲突。...如果窗口较小,则能较好地保护图像中的一些细节信息,但对噪声的过滤效果就会打折扣;反之,如果窗口尺寸较大则会有较好的噪声过滤效果,但也会对图像造成一定的模糊效果,从而丢失一部分细节信息。...res_img = np.copy(noise_img) # 获取噪声图像 noise_mask = get_noise_mask(noise_img) for i in range
领取专属 10元无门槛券
手把手带您无忧上云