机器学习和数据分析变得越来越重要,但在学习和实践过程中,常常因为不知道怎么用程序实现各种数学公式而感到苦恼,今天我们从数学公式的角度上了解下,用 python 实现的方式方法。
在机器学习项目中,你肯定要在代码中实现各种运算,其中必然要用到各种数学符号,因此,必须了解并熟知如何实现。
在前面的几篇文章中我们分别介绍过numpy中的爱因斯坦求和函数Einsum和MindSpore框架中的爱因斯坦求和算子Einsum的基本用法。而我们需要知道,爱因斯坦求和其实还可以实现非常多的功能,甚至可以替代大部分的矩阵运算,比如常见的点乘、元素乘、求和等等这些都是可以的。那我们就逐一看一下可以用爱因斯坦求和来替代的那些函数和方法。
众所周知,Python的for循环本质上要比C慢很多。 而且深度学习和机器学习算法严重依赖通过for循环执行的矩阵运算。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sinat_35512245/article/details/78574306
前言 如何使用Python进行科学计算和数据分析,这里我们就要用到Python的科学计算库,今天来分享一下如何安装Python的数据科学计算库。 数据科学计算库 Python中的数据科学计算库有Numpy、Scipy、pandas、matplotlib(前面我分享了一篇matplotlib的简单应用,历史文章里面就有)。 Numpy是一个基础性的Python库,为我们提供了常用的数值数组和函数。 Scipy是Python的科学计算库,对Numpy的功能进行了扩充,同时也有部分功能是重合的。Numpy和Sci
文章首发于本人CSDN账号:https://blog.csdn.net/tefuirnever
从机器学习学python(四)——numpy矩阵广播及一些技巧 (原创内容,转载请注明来源,谢谢) 在学ng的深度学习微专业时,其中有几节课讲到numpy的一些基本用法,主要是广播。 1、基本运算 考虑下面一个3*4的矩阵,要给每列求和,并且要求出每个元素占本列的百分比,这里不需要用到for循环,直接用numpy的方法即可。 假设矩阵A是3*4的矩阵,则B=A.sum(axis=0)返回的是对矩阵A每一列求和结果的行向量,同理A.sum(axis=1) 返回的是对矩阵A每一行求和结果的列向量。 接下
向量加和:A + B = B + A 需要维度相同 [1, 2] + [3, 4] = [4, 6]
NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。
对于一个马上要毕业的大四学生来说,突然由后端转学机器学习,学起来好难,尤其是回归那里,数学好难!!!!!!!! 因为回归的公式太难搞了,这里先整理一手分类的入门算法,KNN。
本文是根据Python数学建模算法与应用这本书中的例程所作的注解,相信书中不懂的地方,你都可以在这里找打答案,建议配合书阅读本文
python作为一门编程语言,有非常大的生态优势,但是其执行效率一直被人诟病。纯粹的python代码跑起来速度会非常的缓慢,因此很多对性能要求比较高的python库,需要用C++或者Fortran来构造底层算法模块,再用python进行上层封装的方案。在前面写过的这篇博客中,介绍了使用f2py将fortran代码编译成动态链接库的方案,这可以认为是一种“事前编译”的手段。但是本文将要介绍一种即时编译(Just In Time,简称JIT)的手段,也就是在临近执行函数前,才对其进行编译。以下截图来自于参考链接4,讲述了关于常见的一些编译场景的区别:
NumPy是Python的最重要的扩展程序库之一,也是入门机器学习编程的必备工具。然而对初学者来说,NumPy的大量运算方法非常难记。
列表类占用的内存数倍于数据本身占用的内存,Python自带的列表类会储存每一个元素的数据信息,数据类型信息,数据大小信息等。这是因为Python语言是一种可以随时改变变量类型的动态类型语言,而C语言和Fortran语言是静态类型语言,静态类型语言一般会在建立变量前先定义变量,并且不可以修改变量的变量类型。总的来说,numpy模块有以下两个优点:
在深度学习的世界里,注意力机制(Attention Mechanism)是一种强大的技术,被广泛应用于自然语言处理(NLP)和计算机视觉(CV)领域。它可以帮助模型在处理复杂任务时更加关注重要信息,从而提高性能。在本文中,我们将详细介绍注意力机制的原理,并使用 Python 和 TensorFlow/Keras 实现一个简单的注意力机制模型。
# 参考网站:http://cs231n.github.io/python-numpy-tutorial/
NumPy提供了大量的数值编程工具,可以方便地处理向量、矩阵等运算,极大地便利了人们在科学计算方面的工作。另一方面,Python是免费,相比于花费高额的费用使用Matlab,NumPy的出现使Python得到了更多人的青睐
最近我以电子版的形式出了第二本书《Python 从入门到入迷》,然后定期更新书中的内容,最先想到的便是 einsum。
提到推荐系统,很多人第一反应就是协同过滤,由此可见协同过滤与推荐系统的关系是有多么紧密。这里介绍下基于用户的协同过滤。
BERT、RoBERTa、ALBERT、SpanBERT、DistilBERT、SesameBERT、SemBERT、MobileBERT、TinyBERT 和 CamemBERT 有什么共同点?别说「BERT」,那不是我想要的答案。
吴恩达老师课程原地址: https://mooc.study.163.com/smartSpec/detail/1001319001.htm
作为2021年的第一篇原创,首先祝大家在新的一年里身体健康,万事顺意。今天给大家介绍的是腾讯发表的一篇论文《Future-Aware Diverse Trends Framework for Recommendation》。推荐系统中的用户体验非常重要,而推荐多样性是其中比较关键的一环。论文提出了一种提升多样性的推荐系统框架FAT(future-aware diverse trends (FAT) framework),其核心思路是根据与用户最近行为相似用户的行为来建模用户未来可能的多样化兴趣演化趋势,接下来一起学习一下。
语义搜索和检索增强生成(RAG)正在彻底改变我们的在线交互方式。实现这些突破性进展的支柱就是向量数据库。选择正确的向量数据库能是一项艰巨的任务。本文为你提供四个重要的开源向量数据库之间的全面比较,希望你能够选择出最符合自己特定需求的数据库。
1、场景描述 在数据统计分析过程中,求累计值(总和)是最常用的统计指标之一,市面上的各种流行数据库均支持的查询方式基本如下: select sum(c) from table_name; 当数据量在小规模时,sum只是一瞬间的事情,让你感觉电脑真牛逼啊,我掰手指头要算半天的数,它居然可以这么快,下面是1万多条数据的字段求和,只用了8ms。 但是当数据量不断增长到一个量级时,比如说,先定个小目标:一亿条订单求总额,你可以尝试在常规的数据库上执行同样的语句需要多长时间。 在我的电脑上执行这样的查询,大约需要10
为啥呢,因为深度学习中的数据量往往巨大,用for循环去跑的话效率会非常低下,相比之下,矩阵运算就会快得多。而python的矩阵“传播机制(broadcasting)”和专门用于矩阵计算的numpy包更是给了我们使用矩阵运算的理由。
Swifter是一个“以最快的方式将任何函数应用于Pandas dataframe或series”的库。
学习如何用神经网络的思维模式提出机器学习问题、如何使用向量化加速你的模型。 先介绍一些名词 training set (训练集) feature vector(特征向量) classifier(分类器) calculus(微积分) 循环(loop) 数据集(datasets) vectorization (向量化) matrix(矩阵) vector(向量) 本周用到的一些符号【Notation】 (x,y)表示一个单独的样本 x是xn维的特征向量 标签y值为0/1 训练集由m个训练样本构成 (x^
从【DL笔记1】到【DL笔记N】,是我学习深度学习一路上的点点滴滴的记录,是从Coursera网课、各大博客、论文的学习以及自己的实践中总结而来。从基本的概念、原理、公式,到用生动形象的例子去理解,到动手做实验去感知,到著名案例的学习,到用所学来实现自己的小而有趣的想法......我相信,一路看下来,我们可以感受到深度学习的无穷的乐趣,并有兴趣和激情继续钻研学习。 正所谓 Learning by teaching,写下一篇篇笔记的同时,我也收获了更多深刻的体会,希望大家可以和我一同进步,共同享受AI无穷的乐趣。
Numpy是用来存储和处理大型矩阵,比Python自身的嵌套列表结构要高效的多,本身是由C语言开发。这个是很基础的扩展,其余的扩展都是以此为基础。
我们可以创建一个NumPy数组(也就是强大的ndarray),方法是传递一个python列表并使用' np.array() '。在本例中,python创建了我们可以在这里看到的数组:
互联网万物基于ChatGPT,学习深度学习之前,先来请教一下ChatGPT如何进行学习。
"LangChain 系列" 是一系列全面的文章和教程,探索了 LangChain 库的各种功能和特性。LangChain 是由 SoosWeb3 开发的 Python 库,为自然语言处理(NLP)任务提供了一系列强大的工具和功能。
点击 机器学习算法与Python学习 ,选择加星标 精彩内容不迷路 选自Medium,作者:Lev Maximov 机器之心编译 支持大量多维数组和矩阵运算的 NumPy 软件库是许多机器学习开发者和研究者的必备工具,本文将通过直观易懂的图示解析常用的 NumPy 功能和函数,帮助你理解 NumPy 操作数组的内在机制。 NumPy 是一个基础软件库,很多常用的 Python 数据处理软件库都使用了它或受到了它的启发,包括 pandas、PyTorch、TensorFlow、Keras 等。理解 N
NumPy 是一个基础软件库,很多常用的 Python 数据处理软件库都使用了它或受到了它的启发,包括 pandas、PyTorch、TensorFlow、Keras 等。理解 NumPy 的工作机制能够帮助你提升在这些软件库方面的技能。而且在 GPU 上使用 NumPy 时,无需修改或仅需少量修改代码。
目前有几种Java调用Python的方法,不过能良好兼容Python第三方库的方法通常是使用
如果怀疑神经网络过度拟合了数据,即存在高方差问题那么最先想到的方法可能就是正则化,另一个解决高方差的方法就是准备更多数据,这也是非常可靠的办法,但你可能无法时时准备足够多的训练数据或者获取数据的成本很高。
除了前面介绍的ndarray数组对象和ufunc函数之外,NumPy还提供了大量对数组进行处理的函数。
重塑 (reshape) 和打平 (ravel, flatten) 这两个操作仅仅只改变数组的维度
numpy是Python的高级数组处理扩展库,提供了Python中没有的数组对象,支持N维数组运算、处理大型矩阵、成熟的广播函数库、矢量运算、线性代数、傅里叶变换以及随机数生成等功能,可与C++、FORTRAN等语言无缝结合,树莓派Python v3默认安装就已包含了numpy。 根据Python社区的习惯,首先使用下面的方式来导入numpy模块: >>> import numpy as np (1)生成数组 >>> np.array((1, 2, 3, 4, 5)) #把Python列表转换成数组 ar
# -*- coding: utf-8 -*- """ 主要记录代码,相关说明采用注释形势,供日常总结、查阅使用,不定时更新。 Created on Fri Aug 24 19:57:53 2018
在处理大规模数据集或进行复杂计算时,性能是关键的考虑因素。NumPy 提供了一些工具和技巧,帮助用户优化代码以提高执行效率。在本篇博客中,我们将深入介绍 NumPy 中的性能优化技术,并通过实例演示如何应用这些技巧。
链接:https://blog.csdn.net/John_xyz/article/details/79208564
【导读】einsum 全称 Einstein summation convention(爱因斯坦求和约定),又称为爱因斯坦标记法,是爱因斯坦 1916 年提出的一种标记约定,本文主要介绍了einsum 的应用。
前言 上一篇我们介绍了 Octave 的一些基本情况,大家对 Octave 应该已经有了一个基本的了解,我相信看这篇文章的朋友已经在自己的电脑中安装好 Ocatve 了。矩阵的操作是 Octave 的一大特色。这一节,我将讲述 Octave 对于矩阵的一些操作,希望大家在看文章的过程中可以跟着一起敲一下代码,加深一下印象。 矩阵的生成 Octave 中,我们用一个中括号来表示一个矩阵,用分号来分隔每一行,即使在输入的时候不在同一行就像下面这样: >> A = [1 2; 3 4; 5 6] A =
总之,机器人提示词工程师需要具备全面的技术能力、创新能力、沟通能力和自我学习能力,能够不断提升自己的能力和水平,满足客户的需求。
这个功能很简单也很常用,但是不加注意还是容易写错,比如只对每一行的前两个元素求和:
Hi! 大家好,又和大家见面了。上次给大家介绍了Numba中一句话加速for循环的@jit加速你的python脚本,今天继续给大家介绍另外一个我觉得很不错的Numba的用法。
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 自从本公众号创建以来就一直深究于统计学习、深度学习等相关机器学习算法原理方面的解读,累计推文四百余篇。开设了机器学习的各个系列,唯独一直没有开设各个算法的代码分享系列,虽然中间会穿插着分享一些部分代码,但是不够全面,不够系统。18年,正式踏入工作,但同时作为《机器学习算法与python学习》的运营,总想着要继续为这7万多小伙伴做些什么。今天,在整理C4.5的时候突然想到可以开设一个代码
领取专属 10元无门槛券
手把手带您无忧上云