首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python实用技巧大任务切分

    今天来说说,Python 中的任务切分。以爬虫为例,从一个存 url 的 txt 文件中,读取其内容,我们会获取一个 url 列表。我们把这一个 url 列表称为大任务。...列表切分 在不考虑内存占用的情况下,我们对上面的大任务进行一个切分。比如我们将大任务切分成的小任务是每秒最多只访问5个URL。...生成器切分 # -*- coding: utf-8 -*- # @时间 : 2019-11-23 23:47 # @作者 : 陈祥安 # @文件名 : g.py # @公众号: Python学习开发...,这里我们每次切分出含有5个元素的生成器,因为生成器没有__len__方法所以,我们将其转为列表,然后判断列表是否为空,就可以知道迭代是否该结束了。...下面就和大家讨论,异步生成器切分的问题 异步生成器切分 首先先来看一个简单的异步生成器。

    60530

    数据库数据切分

    垂直切分 将数据库想象成由很多个一大块一大块的“数据块”(表)组成,垂直地将这些“数据块”切开,然后把它们分散到多台数据库主机上面 优点 (1)数据库的拆分简单明了,拆分规则明确 (2)应用程序模块清晰明确...(3)数据维护方便易行,容易定位 缺点 (1)部分表关联无法在数据库级别完成,要在程序中完成 (2)对于访问极其频繁且数据量超大的表仍然存在性能瓶颈,不一定能满足要求 (3)事务处理复杂 (4)切分达到一定程度之后...,扩展性会受到限制 (5)过度切分可能会带来系统过于复杂而难以维护 水平切分 将某个访问极其频繁的表再按照某个字段的某种规则分散到多个表中,每个表包含一部分数据 优点 (1)表关联基本能够在数据库端全部完成...(2)不会存在某些超大型数据量和高负载的表遇到瓶颈的问题 (3)应用程序端整体架构改动相对较少 (4)事务处理相对简单 (5)只要切分规则能够定义好,基本上较难遇到扩展性限制 缺点 (1)切分规则相对复杂...,很难抽象出一个能够满足整个数据库的切分规则 (2)后期数据的维护难度有所增加,人为手工定位数据更困难 (3)应用系统各模块耦合度较高,可能会对后面数据的迁移拆分造成一定的困难

    89550

    python浮雕图片_python图片处理PIL

    PIL允许在单张图片中合成相同维数和深度的多个通道。 以RGB图像为例,每张图片都是由三个数据通道构成,分别为R、G和B通道。而对于灰度图像,则只有一个通道。...PIL也支持一些特殊的模式,包括RGBX(有padding的真彩色)和RGBa(有自左乘alpha的真彩色) 3、 尺寸 通过size属性可以获取图片的尺寸。...5、 调色板 调色板模式 (“P”)使用一个颜色调色板为每个像素定义具体的颜色值 6、 信息 使用info属性可以为一张图片添加一些辅助信息。这个是字典对象。...二、Image方法 常用方法 img = Image.open(“1.png”) #获取图片句柄 img.show() #打开图片 img.save...) img.rotate #图片翻转例如;img3 = img.rotate(90) #图片旋转90度 img.resize

    2K30

    HBase Region自动切分细节

    HBase系统中Region自动切分是如何实现的,这里面涉及很多知识点,比如Region切分的触发条件是什么、Region切分切分点在哪里、如何切分才能最大的保证Region的可用性、如何做好切分过程中的异常处理...ConstantSizeRegionSplitPolicy'} Region切分准备工作:寻找Splitpoint region切分策略会触发region切分切分开始之后的第一件事是寻找切分点-splitpoint...Region核心切分流程 HBase将整个切分过程包装成了一个事务,意图能够保证切分事务的原子性。...,即要么切分完全成功,要么切分完全未开始,在任何情况下也不能出现切分只完成一半的情况。...Region切分对其它模块的影响通过region切分流程的了解,我们知道整个region切分过程并没有涉及数据的移动,所以切分成本本身并不是很高,可以很快完成。

    2.1K71

    python图片合成

    python的PIL库简直好用的不得了,PIL下面的Image库更是封装了很多对图片处理的函数,关于Image库的介绍和使用,看这里:http://effbot.org/imagingbook/image.htm...这里用我半个月前看到的一篇博客写的demo作为背景,做一下图片的合成 图片可以看作是很多像素点组成的,每个像素点都是一个RGB颜色,(red, green, blue), 那么合成两张照片就有办法了,...我们可以在一张新的RGB色的图片里一个像素点取图片一的对应位置的像素,下一个像素点取图片二的像素,直到遍历完成,代码如下: from PIL import Image ##这里采用传入图片地址调用此函数...Image #将像素点按比例取色,然后合成一个新像素点 #传入的参数为两张图片的地址和比例 #如果两者之和不为1则以第一个图片的比例为准 def merge2(img1_address,img2_address...address = "B:\Picture\YourName\1.jpg" img2_address = "B:\Picture\YourName\2.jpg" direction = "D:/Python

    2.2K20
    领券