上面的操作其实可以用矩阵运算来简单的表示,但是用矩阵表示变换的时候会有一个问题:用一个矩阵可以同时表示点的缩放、旋转,但是没办法表示平移了。...1.缩放矩阵 点在x、y、z轴的缩放分别为Sx、Sy、Sz,那么缩放可以用下面的矩阵来表示: Sx 0 0 0 0 Sy 0 0 0 0 Sz 0 0 0 0 1 (x,y,z,1) * S = (Sx...+y,Tz+z,1) 4.综合变换矩阵 综合上边的三个矩阵,可以得到最终的变换矩阵: M=S*R*T Sxcos(Rx)cos(Rz) Sxcos(Rx)sin(Rz) -Sx*sin(Ry) 0 Sy...、缩放、平移操作,所影响的矩阵中的位置就一目了然了 4.1左右手系转换 假如我们得到了一个右手坐标系下的变换矩阵,需要把它转换为左手坐标系下的变换矩阵,那么可以将其绕一个平面翻转,假设选择绕xoy平面翻转...-1,即可得到绕xoy平面翻转之后的左手系变化矩阵。
那么一个在局部坐标系中定义的向量与它相应的整体坐标系下的向量的转换矩阵为 \mathbf T_2 =\begin{bmatrix} l_x& l_y& l_z \\ m_x& m_y& m_z...\\ n_x& n_y& n_z\\ \end{bmatrix} \quad (1) 由于空间梁单元的每个结点都有6个位移,可组成两个三维的向量,因此它的结点位移共有4个三维的向量,转换矩阵相应地为...现在来推导梁单元转换矩阵 T 的转换公式。...m_y & = n_zl_x - l_zn_x \\ n_y & = l_zm_x - l_xm_z \\ \end{split} \quad (10) 综上,得到局部坐标系和整体坐标系之间位移的转换矩阵为...-n_x(l_xg_1+m_xg_2+n_xg_3)}{s}& \frac{l_xg_2-m_xg_1}{s} \\ \end{bmatrix} \quad (11) 因此,在计算空间梁单元的转换矩阵时
一个图片有三个通道RGB,每个通道就是一层数据 以一个图片为例子,从图片数据,再由数据到图片转化过程,理解数据与图形以及表示的关系 兔子 from PIL i...
我有一个关于按元素划分矩阵的问题,我的意思是我想要第一个矩阵的元素[I,j]除以第二个矩阵(Q)的元素[I,j]。在 一些背景信息:我从我的存储器加载了一个图像。...我把每个像素的单色值存储在一个叫做“pixelMatrix”的矩阵中 此命令将大矩阵(128×128)转换为较小的矩阵(8×8)foto_dct = skimage.util.view_as_blocks...(pixelMatrix, block_shape=(8, 8)) 现在,在完成这项工作之后,我需要将foto_dct中的每个矩阵除以一个不同的矩阵(在这段代码中称为“Q”)。...这是矩阵“Q”:[[ 16 11 10 16 24 40 51 61] [ 12 12 14 19 26 58 60 55] [ 14 13 16 24 40 57 69 56] [ 14 17 22...(foto_dct[3,3],尽管我对它做了一些操作,第3列矩阵,第3行矩阵,如果你还记得第1步的话)[[613 250 -86 64 -63 59 -44 24] [ 38 -84 50 -57 54
用python怎么实现矩阵的转置 只能用循环自己写算法吗 自带函数有可以算的吗 或者网上的算法可以用的 python矩阵转置怎么做?...T python 字符串如何变成矩阵进行矩阵转置 如输入一串“w,t,w;t,u,u;t,u,u”将其变成矩阵进行转置操作 需CSS布局HTML小编今天和大家分享: 你需要转置一个二维数组,将行列互换...print [[r[col] for r in arr] for col in rang 用python输入一个矩阵字符串srcStr,输出这个矩阵要CSS布局HTML小编今天和大家分享:输入将以“用半角逗号隔开列...matrix = [matrix[i][j] for i in range(length)] for j in range(length)] Method 2: matrix = zip(*matrix) python...(10, 99) for i in range(5)] for j in range(5)])result = before.Tprint(result) 如何用python实现行列互换 用excel的话建议用
python的numpy创造矩阵 from numpy import mat import numpy as np data1=mat(zeros((3,3))); #创建一个...3*3的零矩阵,矩阵这里zeros函数的参数是一个tuple类型(3,3) data2=mat(ones((2,4))); #创建一个2*4的1矩阵,默认是浮点型的数据, ... 创建的是一个二维数组, data4=mat(random.randint(10,size=(3,3))); #生成一个3*3的0-10之间的随机整数矩阵...data6=mat(eye(2,2,dtype=int)); #产生一个2*2的对角矩阵 a1=[1,2,3]; a2=mat(diag(a1)); #生成一个对角线为...1、2、3的对角矩阵 手动创造矩阵 count = 1 a = [] for i in range(0, 3): tmp = [] for j in range(0, 3):
参数解释:row_num=行数 column_num = 列数 start=第一行第一列元素的值 step=步长
限定步长,起始数字,然后生成x行,y列的矩阵 >>> def range2rect(x,y,start=0,step=1): ... N=[] ... F=[] ......return N ... >>> N=range2rect(3,4) >>> N [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]] 由一个元组形式生成矩阵
1)、转置矩阵 用矩阵属性T把矩阵的每列转为每行(逆时针转90度)。...m1 = np.arange(24).reshape(2,3,4) #三维为2,二维3,一维为4 m1 array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10...[[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]]) md = np.moveaxis(m1,0,-1) #0为m1的第三维值下标...reshape(2,2,2) m3 varray([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) np.swapaxes(m3,0,2) #第一维的值与第三维的值对换...在线性代数中会求矩阵的逆矩阵,方便矩阵之间的计算。一个矩阵A可逆的充分必要条件是,行列式|A|≠0。 1)、函数inv(a)求方阵的逆矩阵,a为矩阵或数组对象。
matrix = [[0,0,0,1,0], [0,0,0,0,0], [0,2,0,0,0], [0,0,0,0,0], [0...
参考链接: Python程式转置矩阵 from...import与import区别在于import直接导入指定的库,而from....import则是从指定的库中导入指定的模块 import...as...1.347183,13.175500],[1.176813 ,3.167020],[-1.781871 ,9.097953]] dataMat= mat(dataSet).T #将数据集转换为 numpy矩阵
a为3*4的矩阵,b为2*4的矩阵,现要形成[ab\frac{a}{b}]一样的矩阵,就需要扩充a 法一: import numpy as np a=np.row_stack( (...这里举个例子: training_set是个(imgMatrix,label)的二维元组,imgMatrix是个60000*784的矩阵,label是个784*1的矩阵。...下面程序的目的是从imgMatrix中找出同一种类的img,并分别构成各个种类的矩阵 注释部分采用的法1,循环6000次就需要5.02s,60000次时间更长,不是简单的5.02s*10,我没有继续等待
, (3, 6)] >>> list(zip(a,c)) #a,c元素个数不同,以最短的那个为准 [(1, 7), (2, 8), (3, 9)] >>> list(zip(*d)) #相当于对矩阵...d求转置矩阵 [(1, 4, 7), (2, 5, 8), (3, 6, 9)] 注意:python 2和python 3不同,在python 3 中因为返回的是list,座椅要加list() ,python
顾名思义,数字组成的矩形,例如: [1 2 3 4 5 67 8 9 1011 ] 现在,我们需要用python编程来实现矩阵的乘法。...解决方案 1.矩阵乘法原理 要做矩阵的乘法,首先得搞清楚几点关于矩阵乘法的知识。 只有一个矩阵的列数等于另一个矩阵的行数时,这两个矩阵才能相乘。...矩阵乘法的原理是,一个矩阵的每一行分别与另一个矩阵的每一列的每一个数一一对应相乘再相加,得到的数字就是结果矩阵的中的一个数。 结果矩阵的形状是一个矩阵的行数和另一个矩阵的列数。...2.python实现矩阵乘法 知道了矩阵乘法的原理后,再一起来看看如何用python编写出程序吧。如何输入输出矩阵就不说了,直接看中间的算法。有以下几个步骤: “定循环”。...图2.4.1 运行效果 结语 Python中很多东西常常与数学有关,要想做正确,还得究其原理。对于矩阵乘法,可以是说得非常详细了,甚至会显得有点啰嗦,但是,所体现的是对于一个问题的解题思路。
python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包。...1 2 2.矩阵的创建 由一维或二维数据创建矩阵 from numpy import *; a1=array([1,2,3]); a1=mat(a1); 1 2 3 创建常见的矩阵 data1=mat(...zeros((3,3))); #创建一个3*3的零矩阵,矩阵这里zeros函数的参数是一个tuple类型(3,3) data2=mat(ones((2,4))); #创建一个2*4的1矩阵,默认是浮点型的数据...矩阵相乘 a1=mat([1,2]); a2=mat([[1],[2]]); a3=a1*a2; #1*2的矩阵乘以2*1的矩阵,得到1*1的矩阵 1 2 3 4 2....2 3.矩阵求逆,转置 矩阵求逆 a1=mat(eye(2,2)*0.5); a2=a1.I; #求矩阵matrix([[0.5,0],[0,0.5]])的逆矩阵 1 2 3 矩阵转置 a1=mat
Python中的矩阵转置 via 需求: 你需要转置一个二维数组,将行列互换....讨论: 你需要确保该数组的行列数都是相同的.比如: arr = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]] 列表递推式提供了一个简便的矩阵转置的方法:...4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]] 另一个更快和高级一些的方法,可以使用zip函数: print map(list, zip(*arr)) 本节提供了关于矩阵转置的两个方法...在zip版本中,我们使用*arr语法将一维数组传递给zip做为参数,接着,zip返回一个元组做为结果.然后我们对每一个元组使用list方法,产生了列表的列表(即矩阵).因为我们没有直接将zip的结果表示为...关于*args和**kwds语法: args(实际上,号后面跟着变量名)语法在Python中表示传递任意的位置变量,当你使用这个语法的时候(比如,你在定义函数时使用),Python将这个变量和一个元组绑定
考虑到这个专栏的后续好几篇文章都会涉及到三维重建,因此今天这篇文章将回顾基本的成像模型,分析各种成像形式下的相机矩阵。为下一篇文章讲述相机的几何参数标定打下基础。 一....当我们用齐次坐标表达一个点时,我们只需要加入一个不为0的第三个坐标,就很容易用1个三维矩阵来表达平移了。...采用齐次坐标,我们很容易将各种二维变换统一到一起,用矩阵来表达这种变换: 2.2 三维变换和齐次坐标表达 在讨论相机成像时,我们需要处理三维空间中的点。因此我们来看看三维点的齐次坐标和相关的变换。...最终,采用了齐次坐标,我们就可以把各种三维变换也用矩阵和点的乘法来表达了: 2.3 旋转矩阵的特别之处 看看下面这张图,我们把原图进行旋转θ度,再把结果旋转-θ度。...稍微思考一下,就可以用矩阵和点的乘法来表达,这里转换矩阵就是P 这个转换矩阵还可以进一步拆分成下面的样子: 这里面的归一化投影变换,可以按下图来理解,即将三维空间点投影到了一个对焦距离为1的标准像平面上
Python三维绘图 在遇到三维数据时,三维图像能给我们对数据带来更加深入地理解。python的matplotlib库就包含了丰富的三维绘图工具。...1.创建三维坐标轴对象Axes3D 创建Axes3D主要有两种方式,一种是利用关键字projection='3d'l来实现,另一种则是通过从mpl_toolkits.mplot3d导入对象Axes3D来实现...,目的都是生成具有三维格式的对象Axes3D....ax1 = plt.axes(projection='3d') #ax = fig.add_subplot(111,projection='3d') #这种方法也可以画多个子图 #方法二,利用三维轴方法...3.三维曲面 下一步画三维曲面: fig = plt.figure() #定义新的三维坐标轴 ax3 = plt.axes(projection='3d') #定义三维数据 xx = np.arange
#列出实验数据 point=[[2,3,48],[4,5,50],[5,7,51],[8,9,55],[9,12,56]] plt.xlabel("X1") plt.ylabel("X2") #表示矩阵中的值...2Sum = X2_2Sum+x2i**2 YSum = YSum+yi X1YSum = X1YSum+x1i*yi X2YSum = X2YSum+x2i*yi # 进行矩阵运算...# _mat1 设为 mat1 的逆矩阵 m1=[[ISum,X1Sum,X2Sum],[X1Sum,X1_2Sum,X1X2Sum],[X2Sum,X1X2Sum,X2_2Sum]] mat1 =...m2=[[YSum],[X1YSum],[X2YSum]] mat2 = np.matrix(m2) _mat1 =mat1.getI() mat3 = _mat1*mat2 # 用list来提取矩阵数据
创建二维列表对象 初始化一个2*3尺寸大小的全零二维列表 获取二维列表行元素的个数 获取二维列表总元素个数 今天介绍一下 Python中二维列表的一些操作。
领取专属 10元无门槛券
手把手带您无忧上云