pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。...读取到的表格内容的数据格式是 Dataframe (pandas 中的一种数据格式),最左侧竖排 0 开始的数字是该数据格式的 index。...合并成功,但仍有问题,即最左侧的 index 和 "序号" 一列中的数字并没有实现依据实际表格数据进行更新,仍是保持原样需要做调整。首先是通过 reset_index 来重置下 index: ?...此外还要对"序号"这一列中的数字更新处理: ? OK,纵向合并完成,将合并后的数据通过 to_excel 方法保存到 xlsx 表格中: ?...基于刚实现的代码,我们就可以将整个合并流程定义成一个独立的方法,针对我们需要处理的大量文件,可以通过 for 循环来遍历、调用定义的方法来逐一完成处理。
说到python与数据分析,那肯定少不了pandas的身影,本文希望通过分析经典的NBA数据集来系统的全方位讲解pandas包,建议搭配IDE一遍敲一边读哦。话不多说,开始吧!...既然已经了解了数据集中的数据类型,现在该概述每个列包含的值了。可以使用.describe(): >>> nba.describe() ?...(nba["team_id"] == "BLB") ... ] 六、分类和汇总数据 我们接着学习pandas处理数据集的其他功能,例如一组元素的总和,均值或平均值。...幸运的是,Pandas 库提供了分组和聚合功能来帮助我们完成此任务。 Series有二十多种不同的方法来计算描述性统计数据。...我们可以在初始数据清理阶段添加列或删除列,也可以稍后基于分析的见解来添加和删除列。
Medium上一位博主就分享了他一步步用Python替换掉十年前的“老情人”Excel的过程,一起来学习一下吧! ?...拟写此文的灵感来自于人人可访问的免费教程网站,我曾认真阅读并一直严格遵守这篇Python文档,链接如下,相信你也会从该网站中找到很多干货。...请按照以下链接下载数据,并将其放在与存储Python文件的同一文件夹中。...Python提供了许多不同的方法来对DataFrame进行分割,我们将使用它们中的几个来了解它是如何工作的。...4、将总列添加到已存在的数据集 ? 5、特定列的总和,使用loc函数 ? 或者,我们可以用以下方法: ? 6、用drop函数删除行 ? 7、计算每列的总和 ?
详细学习 pandas 和 xlrd:从零开始 前言 在数据处理和分析中,Excel 文件是最常见的数据格式之一。Python 提供了强大的库 pandas,可以轻松地处理 Excel 文件中的数据。...本篇博客将从零开始,带你学习如何使用 pandas 和 xlrd 来读取、处理、修改和保存 Excel 文件的数据。我们将详细讲解每一步,并附带代码示例和输出结果。...pandas 是一个用于数据分析和处理的强大 Python 库。它的核心数据结构是 DataFrame 和 Series。...'Name' 来提取 DataFrame 中的某一列,返回一个 Series。...代码示例:增加一列数据 # 增加一列数据,表示这些人的性别 df['Gender'] = ['Female', 'Male', 'Male'] # 显示更新后的 DataFrame print(df)
我们可以通过df[:10].to_csv()保存前10行。我们还可以使用df.to_excel()保存和写入一个DataFrame到Excel文件或Excel文件中的一个特定表格。...我们可以使用fillna()来填充缺失的值。例如,我们可能想用0替换' NaN '。...类似地,我们可以使用df.min()来查找每一行或每列的最小值。 其他有用的统计功能: sum():返回所请求的轴的值的总和。默认情况下,axis是索引(axis=0)。...总结 我希望这张小抄能成为你的参考指南。当我发现更多有用的Pandas函数时,我将尝试不断地对其进行更新。...本文的代码 https://github.com/Nothingaholic/Python-Cheat-Sheet/blob/master/pandas.ipynb 作者:XuanKhanh Nguyen
一、前言 Pandas(Python Data Analysis Library)是基于是基于 NumPy 的数据分析模块,它提供了大量标准数据模型和高效操作大型数据集所需的工具,可以说 Pandas...是使得 Python 能够成为高效且强大的数据分析环境的重要因素之一。...然后,它从这些行中的 “交易额” 列中提取数值,并使用.sum()方法计算这些值的总和。...最后,使用groupby方法将合并后的 DataFrame 按照 “姓名” 和 “职级” 进行分组,并计算每个组中 “交易额” 列的总和。...结果是一个包含姓名、职级和对应交易额总和的 Series,其中索引是多级索引,包括 “姓名” 和 “职级”,值是交易额的总和。
pandas是Python中最受欢迎的数据处理和分析库之一,它提供了高效的数据结构和数据操作工具。本文将详细介绍pandas库的使用方法,包括数据导入与导出、数据查看和筛选、数据处理和分组操作等。...pandas库同样提供了多种方法来导出数据,将数据保存为CSV文件、Excel文件等格式。...代码示例:import pandas as pd# 按列进行分组并计算平均值grouped\_df = df.groupby('column\_name').mean()# 多列分组并计算总和grouped...\_df = df.groupby(['column1', 'column2']).sum()在上面的例子中,我们分别按列进行了分组,并计算了平均值;另外,我们还进行了多列分组,并计算了总和。...pandas的分组操作提供了强大的功能,可以方便地进行数据聚合和分析。五、总结本文详细介绍了Python第三方库pandas的使用方法。
由于其直观的语法和广泛的功能,Pandas已成为数据科学家、分析师和研究人员在 Python中处理表格或结构化数据的首选工具。...05 / 过滤、排序和分组 Pandas是一个强大的Python库,用于数据操作和分析。...中,你可以使用各种函数基于公共列或索引来连接或组合多个DataFrame。...df1, df2, on='A', how='right') / 07 / Pandas中的统计 Pandas提供了广泛的统计函数和方法来分析DataFrame或Series中的数据。...# 计算数值列的描述性统计 df.describe() # 计算某列的总和 df['column_name'].sum() # 计算某列的平均值 df['column_name'].mean()
对于某些任务,使用 Python 的优点是显而易见的。以更快的速度处理更大的数据集。使用基于 Python 构建的开源机器学习库。你可以轻松导入和导出不同格式的数据。...有关 Python 中如何 import 的更多信息,请点击此处。 ? 需要 Pandas 库处理我们的数据。需要 numpy 库来执行数值的操作和转换。...使用一行代码,我们已经将这些数据分配并保存到 Pandas dataframe 中 - 事实证明是这种情况,字典是要转换为 dataframe 的完美数据格式。 ?...我们首先在 Python 中使用 re 库。我们将使用正则表达式来替换 gdppercapita 列中的逗号,以便我们可以更容易地使用该列。 ? re.sub 方法本质上是使用空格替换逗号。...对我们一直在研究的 GDP 数据集进行一系列简单的计算。例如,计算人均国民生产总值超过 5 万的总和。 ? ? 这将给你答案为 770046 。
有些人使用 Excel,有些人使用SQL,有些人使用Python。对于某些任务,使用 Python 的优点是显而易见的。以更快的速度处理更大的数据集。使用基于 Python 构建的开源机器学习库。...使用一行代码,我们已经将这些数据分配并保存到 Pandas dataframe 中 —— 事实证明是这种情况,字典是要转换为 dataframe 的完美数据格式。 ?...这不是很好,由于实际的数字顺序被破坏,这使得 Rank 列无用,特别是使用 Pandas 默认提供的编号索引。 幸运的是,使用内置的 Python 方法:del,删除列变得很容易。 ?...我们首先在 Python 中使用 re 库。我们将使用正则表达式来替换 gdp_per_capita 列中的逗号,以便我们可以更容易地使用该列。 ? re.sub 方法本质上是使用空格替换逗号。...对我们一直在研究的 GDP 数据集进行一系列简单的计算。例如,计算人均国民生产总值超过 5 万的总和。 ? ? 这将给你答案为 770046 。
所需的库 import pyarrow.parquet as pq import pandas as pd pyarrow.parquet模块,可以读取和写入Parquet文件,以及进行一系列与Parquet...例如,可以使用该模块读取Parquet文件中的数据,并转换为pandas DataFrame来进行进一步的分析和处理。同时,也可以使用这个模块将DataFrame的数据保存为Parquet格式。...df_batch = batch.to_pandas() # 将feature列中的列表拆分成单独的特征值 split_features = df_batch['feature..._append(df_batch, ignore_index=True) # 删除原始的feature列 data = data.drop('feature', axis=1) # 保存到csv文件..._append(df_batch, ignore_index=True) # 删除原始的feature列 data = data.drop('feature', axis=1) # 保存到csv文件
实际练习:通过解决实际问题来练习你的技能,可以是工作中的项目,也可以是自己感兴趣的数据集。 在线资源:利用在线教程、视频课程、社区论坛和官方文档来学习。...自定义视图 创建视图:保存当前的视图设置,如行高、列宽、排序状态等。 这些高级功能可以帮助用户进行更深入的数据分析,实现更复杂的数据处理需求,以及提高工作效率。...、转换、汇总和排序。...在Python编程语言中 处理表格数据通常使用Pandas库,它提供了非常强大的数据结构和数据分析工具。以下是如何在Python中使用Pandas完成类似于R语言中的操作,以及一个实战案例。...Pandas提供了类似于R语言中的数据操作功能,使得数据处理变得非常直观和方便。 在Python中,处理表格数据的基础包是Pandas,但它本身已经是一个非常强大的库,提供了许多高级功能。
基础概念 groupby 方法 groupby是Pandas中最常用的分组工具之一。它允许我们将DataFrame按照一个或多个列进行分组,从而可以对每个分组执行各种聚合操作。...groupby返回的是一个GroupBy对象,该对象本身并不包含任何聚合结果,而是提供了一个接口来应用各种聚合函数。 agg 方法 agg(aggregate的缩写)用于对分组后的数据进行聚合计算。...TypeError: 当尝试对非数值类型的数据应用某些聚合函数(如求和)时,可能会遇到类型错误。确保所有元素属于同一类型,或者使用适当的转换函数。...多个聚合函数 有时我们需要对同一列应用多个聚合函数。agg允许我们通过传递一个包含多个函数的列表来实现这一点。这样可以一次性获取多个聚合结果,而不需要多次调用agg。...:") print(multi_func_agg_result) 总结 通过对Pandas groupby和agg的学习,我们可以更好地理解和运用这一强大工具来满足各种数据分析需求。
01 Pandas是什么 很多初学者可能有这样一个疑问:“我想学的是Python数据分析,为什么经常会被引导到Pandas上去?”虽然这两个东西都是以P开头的,但它们并不是同一个层面的东西。...目前Python的正式版已经更新到3.9版本,且官方不再维护2.0版本,因此建议初学者(包括已经在学习的)至少从3.6版本开始学习Python,之后的版本功能差异不会太大。...Python中的库、框架、包意义基本相同,都是别人造好的轮子,我们可以直接使用,以减少重复的逻辑代码。正是由于有众多覆盖各个领域的框架,我们使用起Python来才能简单高效,而不用关注技术实现细节。...Pandas目前已经更新到1.2.1版本。...02 Pandas的使用人群 Pandas对数据的处理是为数据分析服务的,它所提供的各种数据处理方法、工具是基于数理统计学的,包含了日常应用中的众多数据分析方法。
说明:有点忙,这本书最近更新慢了一些,抱歉!这部分仍免费呈现给有兴趣的朋友。附已发表内容链接: 1.为什么为Excel选择Python? 2.为什么为Excel选择Python?...引言:本文为《Python for Excel》中第5章Chapter 5:Data Analysis with pandas的部分内容,主要讲解了pandas如何对数据进行描述性统计,并讲解了将数据聚合到子集的两种方法...描述性统计和数据汇总 理解大型数据集的一种方法是计算整个数据集或有意义子集的描述性统计数据,如总和或均值。...为此,首先按洲对行进行分组,然后应用mean方法,该方法将计算每组的均值,自动排除所有非数字列: 如果包含多个列,则生成的数据框架将具有层次索引,即我们前面遇到的多重索引: 可以使用pandas提供的大多数描述性统计信息...然后,提供id_vars来指示标识符,并提供value_vars来定义“非透视表(unpivot)”的列。如果希望准备数据,以便将其存储回需要此格式的数据库,则熔解(melting)非常有用。
标签:Python与Excel,Pandas 前面,我们已经学习了如何从Excel文件中读取数据,参见: Python pandas读取Excel文件 使用Python pandas读取多个Excel...嗯,因为我们大多数人只熟悉Excel,所以我们必须说他们的语言。但是,这并不妨碍我们使用另一种语言来简化我们的工作 保存数据到Excel文件 使用pandas将数据保存到Excel文件也很容易。...图3:由Python保存的Excel文件 我们会发现,列A包含一些看起来像从0开始的列表。如果你不想要这额外增加的列,可以在保存为Excel文件的同时删除该列。...可能通常不使用此选项,因为在保存到文件之前,可以在数据框架中删除列。 保存数据到CSV文件 我们可以使用df.to_csv()将相同的数据框架保存到csv文件中。...本文讲解了如何将一个数据框架保存到Excel文件中,如果你想将多个数据框架保存到同一个Excel文件中,请继续关注完美Excel。
作者:Félix Revert 翻译:Nurhachu Null、张倩 本文转自公众号 机器之心 Pandas 是为了解决数据分析任务而创建的一种基于 NumPy 的工具包,囊括了许多其他工具包的功能,...pandas 相当于 python 中 excel:它使用表(也就是 dataframe),能在数据上做各种变换,但还有其他很多功能。 如果你早已熟知 python 的使用,可以直接跳到第三段。...更新数据 将第八行名为 column_1 的列替换为「english」 在一行代码中改变多列的值 好了,现在你可以做一些在 excel 中可以轻松访问的事情了。...tqdm, 唯一的 在处理大规模数据集时,pandas 会花费一些时间来进行.map()、.apply()、.applymap() 等操作。...散点矩阵的例子。它在同一幅图中画出了两列的所有组合。
后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 有不少小伙伴向我反映 pandas 专栏缺少练习题,因此这里我使用一套 sql 的题目,作为 pandas...) 假设数据完全按照关系型数据库的方式保存,我们当然可以使用 sql 的思维,使用 pandas 完成一系列需求,但是本文将教你一种更直观的解决方式。...---- 查询语文比数学成绩高的学生的信息及课程分数 直接看如下示意图: 不管如何,构造一列 bool 值,是所有 pandas 筛选数据的重点 查询同时存在语文和数学成绩的情况 示意图: 对一个表做...(score) 求平均,注意 axis 参数 行4:这是 pandas 另一种筛选方式 查询存在成绩的学生信息 行2:3列成绩列,任意(any)有一个存在成绩(notna) 所有同学的学生编号、学生姓名...、选课总数、所有课程的成绩总和 行2:3科有成绩(notna),由于 True=1,False=0,因此,求和(sum)就相当于有成绩的科目数 行3:3科成绩求和(sum) 行5:任意(any)一科有成绩
pandas为 Python开发者提供高性能、易用的数据结构和数据分析工具。该包基于NumPy(发音‘numb pie’)中,一个基本的科学计算包,提供ndarray,一个用于数组运算的高性能对象。...数据值也可以从一系列非Python输入资源加载,包括.csv文件、DBMS表、网络API、甚至是SAS数据集(.sas7bdat)等等。具体细节讨论见第11章— pandas Readers。...PROC IMPORT用于读取同一个.csv文件。它是SAS读.csv文件的几个方法之一。这里我们采用默认值。 ? 与SAS不同,Python解释器正常执行时主要是静默的。...Pandas使用两种设计来表示缺失数据,NaN(非数值)和Python None对象。 下面的单元格使用Python None对象代表数组中的缺失值。相应地,Python推断出数组的数据类型是对象。...该方法应用于使用.loc方法的目标列列表。第05章–了解索引中讨论了.loc方法的详细信息。 ? ? 基于df["col6"]的平均值的填补方法如下所示。.
领取专属 10元无门槛券
手把手带您无忧上云