首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    精度与速度的双赢,很难拒绝 | SpectralMamba用动态卷积学习动态 Mask ,将 Mamba速度问题卷服!

    高光谱(HS)成像技术的迅速发展显著增强了人类观察现实世界的能力,细节和深度都得到了提升[1]。与传统摄影仅在有限的几个宽光谱带内获取图像不同,高光谱成像系统通过测量每个像素的能量光谱,前所未有的同时实现了空间和光谱信息的捕获。生成的三维(3-D)高光谱数据立方体包含了每个空间分辨率元素的近乎连续的光谱轮廓,从而使得对成像内容的量化、识别和认定的准确性得到提高。得益于航空航天和仪器技术的最新进展[2],高光谱成像已逐渐成为遥感(RS)不可或缺的工具。在其广泛的应用中,高光谱图像分类在从环境监测、城市规划到军事科学等众多领域引起了广泛关注,展示了其潜在的普遍性和交叉重要性[3, 4]。

    01

    遥感学习武林秘籍分享

    本期分享的内容,为一本厚度为235页的学习资料。内容包括高光谱遥感、高分辨率影像处理、计算智能及其在遥感影像处理中的应用、影像处理工程、遥感应用和模式分析与机器学习等。很适合遥感领域的学生学者去学习和加深对遥感领域的理解,资料供分为18章节,每一章都值得研究和学习,章节内容包括研究概述、研究意义、应用、已取得的成、发展前景和入门资料的推荐等。该学习资料本人强烈推荐学习,希望能够本次料能够开阔你的事业并激发你的学习兴趣。(资料为张良培团队(张良培、钟燕飞、沈焕锋、黄昕、罗斌、夏桂松、杜博、张洪艳、袁强强和张乐飞等)在其主页上公布的主要研究方向介绍。)

    02

    3DCNN论文阅读

    这篇论文应该是3DCNN的鼻祖,对于视频数据来说,作者认为3D ConvNet非常适合于时空特征学习,这里也就是视频分析任务上。 摘要: 我们提出了一种简单而有效的时空特征学习方法,该方法使用在大规模有监督视频数据集上训练的深层三维卷积网络(3D ConvNets)。我们的发现有三个方面:1)与2D ConvNet相比,3D ConvNet更适合时空特征学习;2)具有小的3×3×3卷积核的同质结构是3D ConvNet中性能最好的结构之一;3)我们学习的特征,即C3D(卷积3D),在4个不同的基准上优于最先进的方法,并在其他2个基准上与当前最好的方法相媲美。此外,特征紧凑:在只有10维的UCF101数据集上达到了52.8%的准确率,而且由于ConvNets的快速推理,计算效率也很高。最后,它们在概念上非常简单,易于培训和使用。

    02

    NASA数据集——ACEPOL气溶胶对气候和空气质量的影响,测量气溶胶的化学成分、粒度分布、高度剖面和光学特性

    ACEPOL 研究扫描偏振计(RSP)遥感数据(ACEPOL_AircraftRemoteSensing_RSP_Data)是在 ACEPOL 期间由 ER-2 上的研究扫描偏振计(RSP)收集的遥感测量数据。为了更好地了解气溶胶对气候和空气质量的影响,测量气溶胶的化学成分、粒度分布、高度剖面和光学特性至关重要。在遥感仪器方面,通过将强度和偏振的被动多角度、多光谱测量与高光谱分辨率激光雷达进行的主动测量相结合,可以获得最广泛的气溶胶属性集合。2017 年秋季,由美国国家航空航天局(NASA)和荷兰空间研究所(SRON)联合发起的 "偏振计和激光雷达气溶胶特征描述(ACEPOL)"活动从 NASA 的高空 ER-2 飞机上对美国上空的气溶胶和云层进行了测量。飞机上部署了六台仪器。其中四台是多角度偏振计:机载超角彩虹偏振计(AirHARP)、机载多角度光谱偏振成像仪(AirMSPI)、机载行星探测光谱仪(SPEX Airborne)和研究扫描偏振计(RSP)。另外两台仪器是激光雷达:高光谱分辨率激光雷达 2(HSRL-2)和云物理激光雷达(CPL)。ACEPOL 的运行基地设在美国宇航局位于加利福尼亚州帕姆代尔的阿姆斯特朗飞行研究中心,从而能够观测各种场景类型,包括城市、沙漠、森林、沿海海洋和农业区,以及晴朗、多云、污染和原始大气条件。ACEPOL 的主要目标是评估不同偏振计检索气溶胶和云层微物理和光学参数的能力,以及它们推算气溶胶层高度的能力(近紫外偏振测量法,O2 A 波段)。ACEPOL 还侧重于开发和评估结合主动(激光雷达)和被动(偏振计)仪器数据的气溶胶检索算法。ACEPOL 数据适用于算法开发和测试、仪器相互比较以及主动和被动仪器数据融合研究,是遥感界准备下一代星载 MAP 和激光雷达任务的宝贵资源。

    01

    NASA数据集——通过将强度和偏振的被动多角度、多光谱测量与高光谱分辨率激光雷达进行的主动测量相结合,可以获得最广泛的气溶胶属性数据

    ACEPOL_MetNav_AircraftInSitu_Data是ACEPOL期间在ER-2上收集的现场气象和导航测量数据。为了更好地了解气溶胶对气候和空气质量的影响,测量气溶胶的化学成分、粒度分布、高度剖面和光学特性至关重要。就遥感仪器而言,通过将强度和偏振的被动多角度、多光谱测量与高光谱分辨率激光雷达进行的主动测量相结合,可以获得最广泛的气溶胶属性集合。2017年秋季,由美国国家航空航天局(NASA)和荷兰空间研究所(SRON)联合发起的 "偏振计和激光雷达气溶胶特征描述(ACEPOL)"活动从NASA高空ER-2飞机上对美国上空的气溶胶和云层进行了测量。飞机上部署了六台仪器。其中四台是多角度偏振仪:机载超角彩虹偏振仪(AirHARP)、机载多角度光谱偏振成像仪(AirMSPI)、机载行星探测光谱仪(SPEX Airborne)和研究扫描偏振仪(RSP)。另外两台仪器是激光雷达:高光谱分辨率激光雷达 2(HSRL-2)和云物理激光雷达(CPL)。ACEPOL 的运行基地设在美国宇航局位于加利福尼亚州帕姆代尔的阿姆斯特朗飞行研究中心,从而能够观测各种场景类型,包括城市、沙漠、森林、沿海海洋和农业区,以及晴朗、多云、污染和原始大气条件。ACEPOL 的主要目标是评估不同偏振计检索气溶胶和云层微物理和光学参数的能力,以及它们推算气溶胶层高度的能力(近紫外偏振测量法,O2 A 波段)。ACEPOL 还侧重于开发和评估气溶胶检索算法,将主动(激光雷达)和被动(偏振计)仪器的数据结合起来。ACEPOL 数据适用于算法开发和测试、仪器相互比较以及主动和被动仪器数据融合研究,这使其成为遥感界准备下一代星载 MAP 和激光雷达任务的宝贵资源。

    01

    智能遥感:AI赋能遥感技术

    随着人工智能的发展和落地应用,以地理空间大数据为基础,利用人工智能技术对遥感数据智能分析与解译成为未来发展趋势。本文以遥感数据转化过程中对观测对象的整体观测、分析解译与规律挖掘为主线,通过综合国内外文献和相关报道,梳理了该领域在遥感数据精准处理、遥感数据时空处理与分析、遥感目标要素分类识别、遥感数据关联挖掘以及遥感开源数据集和共享平台等方面的研究现状和进展。首先,针对遥感数据精准处理任务,从光学、SAR等遥感数据成像质量提升和低质图像重建两个方面对精细化处理研究进展进行了回顾,并从遥感图像的局部特征匹配和区域特征匹配两个方面对定量化提升研究进展进行了回顾。其次,针对遥感数据时空处理与分析任务,从遥感影像时间序列修复和多源遥感时空融合两个方面对其研究进展进行了回顾。再次,针对遥感目标要素分类识别任务,从典型地物要素提取和多要素并行提取两个方面对其研究进展进行了回顾。最后,针对遥感数据关联挖掘任务,从数据组织关联、专业知识图谱构建两个方面对其研究进展进行了回顾。

    07

    python与地理空间分析(一)

    在气象数据分析中,地理空间要素是一个必须考虑的关键特征项,也是重要的影响因素。例如气温会随着海拔的升高而降低,地形的坡向朝向也会影响风速的分布,此外,典型的地形会形成特定的气候条件,也是数据挖掘中可以利用的区域划分标准。数据分析中,地理空间分析往往能提供有效的信息,辅助进行决策。随着航空遥感行业的发展,积累的卫星数据也成为了数据挖掘的重要数据来源。 地理空间分析有好多软件可以支持,包括Arcgis,QGIS等软件平台,本系列文章将会着重分享python在地理空间分析的应用。主要包括地理空间数据的介绍,常用的python包,对矢量数据的处理,对栅格数据的处理,以及常用的算法和示例。 地理空间数据包括几十种文件格式和数据库结构,而且还在不断更新和迭代,无法一一列举。本文将讨论一些常用的地理空间数据,对地理空间分析的对象做一个大概的了解。 地理空间数据最重要的组成部分:

    05

    速递:利用卷积神经网络对温带草原冠层氮浓度进行实地光谱分析

    摘要:氮(N)是植物自养的重要特征,是影响陆地生态系统植物生长的主要养分,因此不仅具有根本的科学意义,而且还是作物生产力的关键因素。对冠层氮浓度(N%)进行及时的非破坏性监测需要快速且高度准确的估算,通常使用400-2500 nm光谱区域中的光谱分析法对其进行量化。然而,由于冠层结构混杂,从冠层光谱中提取一组有用的光谱吸收特征来确定N%仍然具有挑战性。深度学习是一种统计学习技术,可用于从冠层光谱中提取生化信息。我们评估了一维卷积神经网络(1D-CNN)的性能,并将其与两种最新技术进行了比较:偏最小二乘回归(PLSR)和高斯过程回归(GPR)。我们利用8年(2009年至2016年)整个新西兰的奶牛场和丘陵农场的大型,多样化的田间多季节(秋季,冬季,春季和夏季)光谱数据库(n = 7014)来开发特定季节和特定于频谱区域(VNIR和/或SWIR)的1D-CNN模型。独立验证数据集(未用于训练模型)的结果表明,一维CNN模型提供的准确度(R2 = 0.72; nRMSE%= 14)比PLSR(R2 = 0.54; nRMSE%= 19)和GPR(具有R2 = 0.62;nRMSE%= 16)。基于1D-CNN的特定季节模型显示出明显的差异(测试数据集为14≤nRMSE≤19),而测试数据集的所有季节组合模型的性能仍然更高(nRMSE%= 14)。全光谱范围模型显示出比特定光谱区域模型(仅VNIR和SWIR)更高的准确性(15.8≤nRMSE≤18.5)。此外,与PLSR(0.31)和GPR(0.16)相比,使用1D-CNN得出的预测更精确(不确定性更低),平均标准偏差(不确定区间)<0.12。这项研究证明了1D-CNN替代传统技术从冠层高光谱光谱中确定N%的潜力。

    07

    NASA数据集:多视角观测改进对沿海和内陆水域的遥感观测

    高质量的现场测量是卫星数据产品验证、算法开发和许多气候相关调查的先决条件。因此,NASA 海洋生物处理小组(OBPG)维护着一个本地海洋和大气原位数据存储库,以支持其定期科学分析。SeaWiFS 项目最初开发了这一系统 SeaBASS,用于对辐射测量和浮游植物色素数据进行编目,以开展校准和验证活动。为了便于收集全球数据集,根据 NASA 研究公告 NRA-96 和 NRA-99,利用 SIMBIOS 计划参与者收集的海洋和大气数据对 SeaBASS 进行了扩充,这在最大限度地减少空间偏差和最大限度地提高数据采集率方面提供了很大帮助。存档数据包括表观和固有光学特性、浮游植物色素浓度的测量值,以及其他相关海洋和大气数据,如水温、盐度、受激荧光和气溶胶光学厚度。数据的收集使用了许多不同的成套仪器,如剖面仪、浮标和手持式仪器,并在包括船舶和系泊设备在内的各种平台上进行制造。

    01
    领券