这个是设定半径范围 50-70 后的效果,因为原图稍微大一点,半径也大了一些。
霍夫圆变换与霍夫直线变换的原理类似,也是将圆上的每个点转换到霍夫空间, 其转换的参数方程如下: 对于圆来说,θ的取值范围在0~360°,这样就有了三个参数, 另外两个参数是圆心(x
以下代码均在python3.6,opencv4.2.0环境下试了跑一遍,可直接运行。
我还有改变的可能性 一想起这一点 我就心潮澎湃 文章目录 一、直线检测 使用霍夫直线变换做直线检测,前提条件:边缘检测已经完成 # 标准霍夫线变换 cv2.HoughLines(image, rho, theta, threshold, lines=None, srn=None, stn=None, min_theta=None, max_theta=None) image:经过边缘检测的输出图像,8位,单通道二进制源图像 rho:距离步长 theta:角度步长 threshold:阈值,只有
霍夫圆变换的基本思路是认为图像上每一个非零像素点都有可能是一个潜在的圆上的一点,跟霍夫线变换一样,也是通过投票,生成累积坐标平面,设置一个累积权重来定位圆。如下图:
r_\theta=x_0\cdot\cos \theta+y_0\cdot\sin \thetarθ=x0⋅cosθ+y0⋅sinθ
学习计算机视觉最重要的能力应该就是编程了,为了帮助小伙伴尽快入门计算机视觉,小白准备了【走进OpenCV】系列,主要帮助小伙伴了解如何调用OpenCV库,涉及到的知识点会做简单讲解。
霍夫变换是检测直线或者圆的一种比较简单的方法。霍夫变换检测直线是比较简单的,做完以后是一个二维平面上的许多曲线,通过统计平面上交点的个数,就可以得出哪些点事处于同一条直线上的。
霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法。主要用来从图像中分离出具有某种相同特征的几何形状(如,直线,圆等)。最基本的霍夫变换是从黑白图像中检测直线(线段)。
在我们开始对图像应用霍夫变换之前,我们需要了解霍夫空间是什么,我们将通过一个例子来进行了解。
Hough(霍夫)变换是一种用于检测线、圆或者图像中其他简单形状的方法。最初Hough变换是一种线变换,这是一种相对较快的检测二值图像中直线的方法,可以进一步推广到除简单线之外的情况。
public void myOPENCV_value_int() { myOPENCV_value[(int)myOPENCV.cvt_color, 0] = 11;//颜色空间转换 参数一 转换标识符 myOPENCV_value[(int)myOPENCV.cvt_color, 1] = 0;//颜色空间转换 参数二 通道 myOPENCV_value[(int)myOPENCV.cvt_color, 2] = 0;//颜色空间转换 myOPENCV_value[(int)myOPENCV.cvt_color, 3] = 0;//颜色空间转换 myOPENCV_value[(int)myOPENCV.boxfilter, 0] = -1;//方框滤波 参数一 图像深度 myOPENCV_value[(int)myOPENCV.boxfilter, 1] = 5;//方框滤波 参数二 size内核宽度 myOPENCV_value[(int)myOPENCV.boxfilter, 2] = 5;//方框滤波 参数三 size内核高度 myOPENCV_value[(int)myOPENCV.boxfilter, 3] = 0;//方框滤波 myOPENCV_value[(int)myOPENCV.blur, 0] = 5;//均值滤波 参数一 size内核宽度 myOPENCV_value[(int)myOPENCV.blur, 1] = 5;//均值滤波 参数二 size内核高度 myOPENCV_value[(int)myOPENCV.blur, 2] = 0;//均值滤波 myOPENCV_value[(int)myOPENCV.blur, 3] = 0;//均值滤波 myOPENCV_value[(int)myOPENCV.gaussianblur, 0] = 5;//颜色空间转换 参数一 size内核宽度 myOPENCV_value[(int)myOPENCV.gaussianblur, 1] = 5;//颜色空间转换 参数二 size内核宽度 myOPENCV_value[(int)myOPENCV.gaussianblur, 2] = 0;//颜色空间转换 参数三 sigmaX myOPENCV_value[(int)myOPENCV.gaussianblur, 3] = 0;//颜色空间转换 参数四 sigmaY myOPENCV_value[(int)myOPENCV.medianblur, 0] = 5;//中值滤波 参数一 孔径线性尺寸 myOPENCV_value[(int)myOPENCV.medianblur, 1] = 0;//中值滤波 myOPENCV_value[(int)myOPENCV.medianblur, 2] = 0;//中值滤波 myOPENCV_value[(int)myOPENCV.medianblur, 3] = 0;//中值滤波 myOPENCV_value[(int)myOPENCV.bilateralfilter, 0] = 25;//双边滤波 参数一 像素相邻直径 myOPENCV_value[(int)myOPENCV.bilateralfilter, 1] = 25;//双边滤波 参数二 颜色空间滤波器sigmacolor myOPENCV_value[(int)myOPENCV.bilateralfilter, 2] = 25;//双边滤波 参数三 坐标空间滤波器sigmaspace myOPENCV_value[(int)myOPENCV.bilateralfilter, 3] = 0;//双边滤波 myOPENCV_value[(int)myOPENCV.dilate, 0] = 0;//膨胀 参数一 MorphShapes 只能取0 1 2 myOPENCV_value[(int)myOPENCV.di
使用python PIL库读取图像,该方法返回一个 Image 对象,Image对象存储着这个图像的格式(jpeg,jpg,ppm等),大小和颜色模式(RGB),它含有一个show()方法用来显示图像:
OpenCV 霍夫变换与轮廓提取 3. 霍夫变换 3.1 霍夫直线 3.2 霍夫圆 4. 轮廓提取 4.1 查找轮廓 4.2 绘制轮廓 3. 霍夫变换 首先放上霍夫变换官方文档:[霍夫直线变换官网文档] 3.1 霍夫直线 import cv2 as cv import matplotlib.pyplot as plt import numpy as np # 1. 将图片以灰度的方式读取进来 img = cv.imread("../img/weiqi.jpg", cv.IMREAD_COLOR) gr
这个问题最早是在QQ群中看到,佳乐跟禾路分别用不同的两个思路完成了处理。原图如下:
这周五没漂亮妹妹带我出去玩了呜呜,无聊在家扣手机,发现大家都在合成大西瓜 。作为一个未来年轻无为的计算机科学家(或许是人民艺术家),我是不屑于玩这种浪费时间又无聊的游戏的(因为玩了四小时才合成了第一个大西瓜),但为了投身到人民群众中去,我决定尝试写一个程序挂机跑一下。
OpenCV图像项目中,圆的检测很常见。 例如:检测烂苹果的个数,寻找目标靶心,人眼,嘴巴识别等。 其中用到的关键技术是OpenCV中集成的霍夫圆检测函数。 HoughCircles( InputArray image, // 输入图像 ,必须是8位的单通道灰度图像 OutputArray circles, // 输出结果,发现的圆信息 Int method, // 方法 - HOUGH_GRADIENT Double dp,
OpenCV是计算机视觉中经典的专用库,然而其中文版官方教程久久不来。近日,一款最新OpenCV4.1 版本的完整中文版官方教程出炉,读者朋友可以更好的学习了解OpenCV相关细节。教程来自objectdetection.cn。
【OpenCV学堂】原创文章作者 贾志刚 推出 OpenCV Python系列视频教程,全套视频教程基于OpenCV Python语言API讲述,简单易学,内容翔实,满满干货!是入门计算机视觉与人工智能的最佳选择。整套教材分为三部分,由浅入深、循序渐进,课程主讲老师-贾志刚
随着信息技术的发展,我国餐饮建设也发生了很大变化。目前食堂大多以人工为主,推行一卡通消费,即自助选菜然后人工结算,这与以往使用饭票或现金结算相比,省去了找零的麻烦,在效率上有一定的提升。人工结算之所以效率低下,是因为食堂工作人员需要首先识别菜品种类,然后对应每种菜品价格,最后口头累计消费数额并打卡,同时在计算金额的过程中也可能会出错。这整一过程不仅需要较长时间,而且准确率也难以保证。
对于每个平面空间的像素点坐标(x,y), 随着角度θ的取值不同,都会得到r值, (%+++%要点.B)而对于任意一条直线来说,在极坐标空间它的(r,θ)都是固定不变的, 则对于边缘图像的每个平面空间坐标点可绘制极坐标的曲线如图所示:
用python的OpenCV实现视频文件的处理,用videoCapture打开视频文件,读取每一帧进行处理,然后用videoWriter保存成视频。
直线检测是经典的底层视觉任务,对一些视觉任务,如自动驾驶、场景3D建模、无人机地平线检测等不可或缺。我们熟知的霍夫变换,就是解决直线检测问题的经典算法。然而,传统算法缺乏鲁棒性,只能受限于简单的应用场景。如今在充分的标注数据支持下,基于神经网络的直线检测算法对检测精度和鲁棒性有了很大提升。在数据驱动下,通过神经网络解决底层视觉任务,效果一般会更好。
昨天突然接到一个需求,识别井盖且判断是否有井盖或无井盖。而且时间紧急,比赛突然加的需求,只给一天时间。一天时间用深度学习方法大概率是来不及了,采集数据标注数据训练模型都要花时间。
导语:前端智能化,就是通过AI/CV技术,使前端工具链具备理解能力,进而辅助开发提升研发效率,比如实现基于设计稿智能布局和组件智能识别等。
光学字符识别(OCR)场景中有很多特殊情况,比如噪声、脏污、倾斜、变形等,都会对识别造成影响。环形文字也是其中一种,我们通常不能直接识别它们,而是先将文字转换到水平方向,再做识别。如下图所示:
OpenCV4.0发布以来,其依靠良好的接口代码、系统级别的优化、更加通用易学的函数调用,集成OpenVINO与tensorflow、caffe等模型加速推断、实现了从传统的图像处理到基于深度学习的视觉处理路线图的完整拓展。OpenCV4 毫无疑问是一个OpenCV发展历史的一个重要里程碑之作。官方的宣传口号是 OpenCV4 is more than OpenCV 充分说明OpenCV4 是整合深度学习的新一代计算机视觉开发框架!
霍夫变换是一种特征提取技术,通过一种投票算法检测具有特定形状的物体。该过程在一个参数空间中通过计算累计结果的局部最大值得到一个符合该特定形状的集合作为hough变换结果。空间变换将一个空间中具有相同形状的曲线或直线映射到另一空间的一个点上形成峰值。
前阵子在做方案时,得了几张骨钉的图片,骨科耗材批号效期管理一直是比较麻烦的,贴RFID标签成本太高,所以一般考虑还是OCR的识别比较好,因为本身骨钉的字符是按圆印上去的,直接截取图片进行OCR没法识别,需要经过图像处理后再识别,所以这篇就是学习一下OpenCV的极坐标变换函数。
之前吃串串火锅,老板数竹签不是称重就是用手慢慢数,但是称重似乎总是得不到正确的竹签数目,而且容易暗箱操作;而慢慢数总是要等待比较长的时间,感觉两者对处理数竹签的问题都存在比较大的缺陷。因此,一款可以数竹签的应用因此产生,一下就弥补了两种处理方式所存在的缺陷。
如果可以用数学形式表示形状,则霍夫变换是检测任何形状的一种比较流行的技术。即使形状有些破损或变形,也可以检测出形状。本文将讲解如何将它何作用于一条线。
霍夫变换是一种特征提取技术,主要应用于检测图像中的直线或者圆。 OpenCV 中分为霍夫线变换和霍夫圆变换。
高低频率 高频图像是强度变化很大的图像。并且亮度级别从一个像素到下一个像素快速变化。低频图像可以是亮度相对均匀或变化非常慢的图像。这是一个例子中最容易看到的。
图像处理是利用计算机对图像进行去噪、增强、复原、重建、编码、压缩、几何变换、分割,提取特征等的理论、方法和技术。图像处理中,输入的是低质量的图像,输出的是改善质量后的图像。
最近我们被客户要求撰写关于泊松过程的研究报告,包括一些图形和统计输出。 本文描述了一个模型,该模型解释了交易的聚集到达,并展示了如何将其应用于比特币交易数据。这是很有趣的,原因很多。例如,对于交易来说,能够预测在短期内是否有更多的买入或卖出是非常有用的。另一方面,这样的模型可能有助于理解基本新闻驱动价格与机器人交易员对价格变化的反应之间的区别
1999年,英特尔的 Gary Bradsky 发起了 OpenCv 项目,并于 2000 年发布第一个版本。2005年,OpenCv 被首次应用在 Stanley,这也是赢得同年 DARPA 大挑战赛的车型。如今,OpenCv 除了支持计算机视觉,还增加了众多机器学习相关算法,未来还将持续扩展。
在这一篇文章中我们将学习使用OpenCV中的 HoughLines 函数和 HoughLinesP 函数来检测图像中的直线.
最近,我们发现自己不得不在应用程序中加入文档扫描功能。在做了一些研究之后,我们偶然发现了一篇熊英写的文章,他是Dropbox机器学习团队的成员。该文章介绍了如何Dropbox的的机器学习团队通过强调他们通过去的步骤,并在每个步骤使用的算法来实现他们的文档扫描仪。通过那篇文章,我们了解了一种称为霍夫变换的方法, 以及如何将其用于检测图像中的线条。因此,在本文中,我们想解释Hough变换算法,并提供该算法在Python中的“从头开始”的实现。
在使用打印机或扫描仪扫描文档时,由于摆放位置差异难免造成扫描文档的倾斜。本文将使用OpenCV将倾斜的文档矫正水平并去除黑边。
大家好,之前发过一篇文章是知识星球上问题,选择了几个经典的二值图像分析问题,从思路到代码实现给大家分析一波,最近又总结收录了知识星球上的提问,实现了从思路分析到代码实现的完整,下面我们就来看看这几个案例思路分析、运行效果、实现的相关API说明等。
Halcon中对应的例子为inspect_bottle_mouth.hdev,用于检测酒瓶瓶口是否出现破损等缺陷情形,检测效果如下:
基尔霍夫电流定律(KCL):基尔霍夫电流定律是电流的基本定律。即任何时刻,在集总电路中,对任一节点(闭合面)而言,所有支路的电流代数和恒等于零,即∑I=0。如流入该节点(闭合面)的电流为正,则流出该节点(闭合面)的电流为负(也可以反过来规定)。
一个比较简单的做法是利用computer vision技术从摄像头视角获取道路信息。然后是选取ROI(Region of Interest), 基本上就是选颜色 + 选区域。
本文探讨了机器学习的可行性,并分析了影响机器学习可行性的因素。文章还介绍了2D感知器模型的机器学习可行性,并探讨了如何通过成长函数来衡量机器学习的可行性。最后,文章提出了一个猜想,即2D感知器的成长函数与break point之间存在某种关系。
大约十年前,我瞥见了第一辆自动驾驶汽车,当时Google仍在对初代无人车进行测试,而我立刻被这个想法吸引了。诚然,在将这些概念开源给社区之前,我必须等待一段时间,但是这些等待是值得的。
一、霍夫直线变换 1、霍夫直线变换 Hough Line Transform用来做直线检测 前提条件 – 边缘检测已经完成 平面空间到极坐标空间转换 2、霍夫直线变换介绍 对于任意一条直线上的所有点来说 变换到极坐标中,从[0~360]空间,可以得到r的大小 属于同一条直线上点在极坐标空(r, theta)必然在一个点上有最强的信号出现,根据此反算到平面坐标中就可以得到直线上各点的像素坐标。从而得到直线 3、相关API 标准的霍夫变换 cv::HoughLines从平面坐标转换到霍夫空间,最终输出是
首先创建一个Wpf项目——WpfOpenCV,这里版本使用Framework4.7.2。
领取专属 10元无门槛券
手把手带您无忧上云