在图论中,最小生成树是一个重要的概念,它是一个连通图的子图,包含图中的所有节点,并且边的权重之和最小。 Prim 算法和 Kruskal 算法是两种常用的最小生成树算法。本篇博客将重点介绍这两种算法的原理、应用场景以及使用 Python 实现,并通过实例演示每一行代码的运行过程。
最小生成树算法用于在一个连通加权无向图中找到一个生成树,使得生成树的所有边的权重之和最小。最小生成树问题在许多实际应用中都有重要的作用,例如网络设计、电力传输等。
【视频】Copula算法原理和R语言股市收益率相依性可视化分析 R语言时间序列GARCH模型分析股市波动率 【视频】量化交易陷阱和R语言改进股票配对交易策略分析中国股市投资组合 使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略 R语言量化交易RSI策略:使用支持向量机SVM R语言资产配置: 季度战术资产配置策略研究 R语言动量交易策略分析调整后的数据 TMA三均线股票期货高频交易策略的R语言实现 R语言时间序列:ARIMA / GARCH模型的交易策略在外汇市场预测应用 R语言基于Garch波动率预测的区制转移交易策略 r语言多均线股票价格量化策略回测 使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略 Python基于粒子群优化的投资组合优化研究 R语言Fama-French三因子模型实际应用:优化投资组合 R语言动量和马科维茨Markowitz投资组合(Portfolio)模型实现 Python计算股票投资组合的风险价值(VaR) R语言Markowitz马克维茨投资组合理论分析和可视化 R语言中的广义线性模型(GLM)和广义相加模型(GAM):多元(平滑)回归分PYTHON用RNN神经网络LSTM优化EMD经验模态分解交易策略分析股票价格MACD R语言深度学习:用keras神经网络回归模型预测时间序列数据 【视频】CNN(卷积神经网络)模型以及R语言实现回归数据分析 Python TensorFlow循环神经网络RNN-LSTM神经网络预测股票市场价格时间序列和MSE评估准确性 数据分享|PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子 Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析 Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类 RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测 结合新冠疫情COVID-19股票价格预测:ARIMA,KNN和神经网络时间序列分析 深度学习:Keras使用神经网络进行简单文本分类分析新闻组数据 用PyTorch机器学习神经网络分类预测银行客户流失模型 PYTHON用LSTM长短期记忆神经网络的参数优化方法预测时间序列洗发水销售数据 Python用Keras神经网络序列模型回归拟合预测、准确度检查和结果可视化 Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析 R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告 R语言深度学习:用keras神经网络回归模型预测时间序列数据 Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类 R语言KERAS深度学习CNN卷积神经网络分类识别手写数字图像数据(MNIST) MATLAB中用BP神经网络预测人体脂肪百分比数据 Python中用PyTorch机器学习神经网络分类预测银行客户流失模型 R语言实现CNN(卷积神经网络)模型进行回归数据分析 SAS使用鸢尾花(iris)数据集训练人工神经网络(ANN)模型 【视频】R语言实现CNN(卷积神经网络)模型进行回归数据分析 Python使用神经网络进行简单文本分类 R语言用神经网络改进Nelson-Siegel模型拟合收益率曲线分析 R语言基于递归神经网络RNN的温度时间序列预测 R语言神经网络模型预测车辆数量时间序列 R语言中的BP神经网络模型分析学生成绩 matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类 R语言实现拟合神经网络预测和结果可视化 用R语言实现神经网络预测股票实例 使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测 python用于NLP的seq2seq模型实例:用Keras实现神经网络机器翻译 用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类
最小生成树( Minimum Spanning Tree , MST )是图论中的一个重要问题,涉及到在一个加权连通图中找到一棵包含所有节点且边的权重之和最小的树。最小生成树问题在许多实际应用中都有重要作用,例如通信网络设计、电路板布线、城市规划等。在本篇博客中,我们将深入探讨最小生成树算法的优化和应用,主要关注两个著名的算法: Prim 算法和 Kruskal 算法。
该文章是一篇技术文章,主要介绍了如何通过编辑距离算法实现文本相似度的计算。文章首先介绍了编辑距离算法的原理,然后详细讲解了基于编辑距离的文本相似度计算方法,并给出了具体的实现代码。最后,文章还探讨了编辑距离算法在技术社区中的应用,包括相似度计算和相似问答系统。
01 — 一个实际问题 要在n个城市之间铺设光缆,要求有2个: 这 n 个城市的任意两个之间都可以通信; 铺设光缆的费用很高,且各个城市之间铺设光缆的费用不同,因此要使铺设光缆的总费用最低。 如下所示
定义: 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。[1] 最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆)算法求出。 Kruskal算法简述: 假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,则按照克鲁斯卡尔算法构造最小生成树的过程为:先构造一个只含 n 个顶点,而边集为空的子图,若将该子图中各个顶点看成是各棵树上的根结点,则它是一个含有 n 棵树的一个森林。之后,从网的边集 E 中选取一条权值最小的
一个连通的生成树是图中的极小连通子图,它包括图中的所有顶点,并且只含尽可能少的边。这意味着对于生成树来说,若砍去它的一条边,就会使生成树变成非连通图;若给它添加一条边,就会形成图中的一条回路。
POJ 1797 Heavy Transportation(最大生成树-Prim) 最大生成树,方法模仿最小生成树,每次选最大边进行操作,即可。 HDU 5723 Abandoned country(最小生成树Kruskal+树形DP) 未解决等待树形DP,再回头来看这个题目。 HDU 5624 KK's Reconstruction(最小生成树-Kruskal) 这个题是让所求最小生成树的最大值与最小值相差最小,对于一棵最小生成树,当他的最小值确定后,他的最大值也就确定
图论是研究图的数学理论和方法,其中图是由顶点集合及连接这些顶点的边集合组成的数学结构。图论在计算机科学、网络规划、生物信息学等众多领域都有重要应用。最小生成树(Minimum Spanning Tree,MST)是图论中一个经典问题,指在一个加权连通图中寻找一棵权值最小的生成树。克鲁斯卡尔(Kruskal)算法和普利姆(Prim)算法是解决最小生成树问题的两种著名算法。
在连通网中查找最小生成树的常用方法有两个,分别称为普里姆算法和克鲁斯卡尔算法。本节,我们给您讲解克鲁斯卡尔算法。
最小生成树:一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。根据定义可知对于一个有V个顶点的图来说,其最小生成树定包含V个顶点与V-1条边。反过来如果一个图的最小生成树存在,那么图一定是连通图。 对于最小生成树算法最著名的有两种:Prim算法与Kruskal算法。
HDU 4081 Qin Shi Huang's National Road System(次小生成树-Kruskal) 博主的方法很好,但是有疑问,为什么不能将最多人口的两城市的距离设置为0,在进行Prim操作,求B呢?这个将在后续的刷题中体现。 POJ 2377 Bad Cowtractors(最大生成树-Kruskal) 裸题,可以用来熟悉算法。 HDU 6141 I am your Father!(最小树形图) 朱刘算法,这个还不会,稍后来填坑。 CodeForces 609 E.Minimu
首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林不产生回路,直至森林变成过一棵树为止
若图中顶点数为n,则它的生成树含有n-1条边。对生成树而言,若砍去它的一条边,则会变成非连通图,若加上一条边则会形成一个回路。
在上一篇文章中,我们看了一下图的遍历算法,主要是对图的深度优先遍历和图的广度优先遍历算法思想的介绍。接下来让我们来看一下图的最小声成树算法。
一个连通图的生成树指的是,极小的连通子图,它含有图中的全部n个顶点,但是只足以构成一棵树的(n-1)条边。
在计算机网络中,VLAN(Virtual Local Area Network,虚拟局域网)是一种将局域网划分为多个逻辑上独立的子网的技术,它可以帮助网络管理员更好地管理网络资源。
在计算机网络中,网络拓扑的稳定性和可靠性是非常重要的。为了解决网络中的环路和冗余路径带来的问题,产生了一系列的网络协议,其中包括STP、RSTP和MSTP。本文将介绍这三种协议的基本概念、工作原理和应用场景。
生成树指在无向图中找一棵包含图中的所有节点的树,此树是含有图中所有顶点的无环连通子图。对所有生成树边上的权重求和,权重和最小的树为最小生成树,次小的为次最小生成树。
虽然放在一起,但是他们两个除了都是树之外没有一点关系。 最短路径生成树,就是ROOT根节点到达任意点距离最短的路径所构成的树,就是最短路径生成树。我画两个图给大家理解。
大家好,今天为大家分享一个不可思议的 Python 库 - algorithms。
图的“多对多”特性使得图在结构设计和算法实现上较为困难,这时就需要根据具体应用将图转换为不同的树来简化问题的求解。
生成树协议是一种二层管理协议,它通过选择性地阻塞网络中的冗余链路来消除二层环路,同时还具备链路备份的功能。
上篇博客我们聊了图的物理存储结构邻接矩阵和邻接链表,然后在此基础上给出了图的深度优先搜索和广度优先搜索。本篇博客就在上一篇博客的基础上进行延伸,也是关于图的。今天博客中主要介绍两种算法,都是关于最小生成树的,一种是Prim算法,另一个是Kruskal算法。这两种算法是很经典的,也是图中比较重要的算法了。 今天博客会先聊一聊Prim算法是如何生成最小生成树的,然后给出具体步骤的示例图,最后给出具体的代码实现,并进行测试。当然Kruskal算法也是会给出具体的示例图,然后给出具体的代码和测试用例。当然本篇博客中
练习题: LeetCode 1135. 最低成本联通所有城市(最小生成树+排序+并查集) LeetCode 1489. 找到最小生成树里的关键边和伪关键边(并查集+kruskal最小生成树)
No.17期 最小生成树(一) Mr. 王:我们再来讲一个时间亚线性算法——最小生成树问题。这里先简单介绍一下树的概念。 小可:那什么是树呢? Mr. 王:树的简单定义,就是一个没有回路的连通无向图。
问题描述 n个村庄间架设通信线路,每个村庄间的距离不同,如何架设最节省开销? 这个问题中,村庄可以抽象成节点,村庄之间的距离抽象成带权值的边,要求最节约的架设方案其实就是求如何使用最少的边、最小的权值和将图中所有的节点连接起来。 这就是一个最小代价生成树的问题,可以用Prim算法或kruskal算法解决。 PS1:无向连通图的生成树是一个极小连通子图。 PS2:生成树是图的一个子图,包括所有的顶点和最少的边(n-1条边)。 PS3:最小代价生成树就是所有生成树中权值之和最小的那个。 算法思路 算
Dijkstra’s algorithm(迪杰斯特拉算法)是一种用于求解单源最短路径问题的经典算法。该算法可以计算从单个起始节点到图中所有其他节点的最短路径。Dijkstra’s algorithm适用于没有负权边的有向或无向带权图。
图论中知名度比较高的算法应该就是 Dijkstra 最短路径算法,环检测和拓扑排序,二分图判定算法 以及今天要讲的最小生成树(Minimum Spanning Tree)算法了。
给定一张带权无向图 G=(V,E),n = |V|, m = |E|。由 V 中全部 n 个顶点和 E 中 n-1 条边构成的无向连通子图被称为 G 的一棵生成树。边权和最小的生成树被称为无向图 G 的最小生成树(Minimum Spanning Tree,MST)。
最近在阅读 USB4 的标准,文档中多次提到 Spanning Tree,于是网上搜了搜,大概有了些概念,写下来促进理解。
连通图:无向图G中,若从顶点i到顶点j有路径相连,则称i,j是连通的;如果G是有向图,那么连接i和j的路径中所有的边都必须同向;如果图中任意两点之间都是连通的,那么图被称作连通图。
设连通图G=(V,E),从任一顶点遍历,则图中边分成两部分:E(G) = T(G)+ B(G),T(G)为遍历通过的边,B(G)为遍历时未通过的边,G’(V,T)为G的子图,称之为G的一棵生成树。
图是一种由节点(顶点)和边组成的数据结构,用于表示不同元素之间的关系。图论算法旨在解决与图相关的问题,例如路径查找、最短路径、最小生成树等。在本文中,我们将深入讲解Python中的图论算法,包括图的表示、常见算法、应用场景,并使用代码示例演示图论算法的操作。
在一给定的无向图 G = ( V , E ) G = (V, E) G=(V,E) 中, ( u , v ) (u, v) (u,v)代表连接顶点 u u u 与顶点 v v v 的边,而 w ( u , v ) w(u, v) w(u,v) 代表此边的权重,若存在 T T T 为 E E E 的子集且为无循环图,使得 w ( T ) w(T) w(T) 最小,则此 T T T 为 G G G 的最小生成树,因为 T T T是由图 G G G产生的。
对于广播,我相信在现实生活中我们时常都能接触到,例如学校一言不合就响起了校歌,搞的全校的人都能够听到,想假装没听到都不行。
我们在图的定义中说过,带有权值的图就是网结构。一个连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边。所谓的最小成本,就是n个顶点,用n-1条边把一个连通图连接起来,并且使得权值的和最小。综合以上两个概念,我们可以得出:构造连通网的最小代价生成树,即最小生成树(Minimum Cost Spanning Tree)。 找连通图的最小生成树,经典的有两种算法,普里姆算法和克鲁斯卡尔算法,这里介绍普里姆算法。 为了能够讲明白这个算法,我们先构造网图的邻接矩阵,如图7-6
像图论算法这种高级算法虽然不算难,但是阅读量普遍比较低,我本来是不想写 Prim 算法的,但考虑到算法知识结构的完整性,我还是想把 Prim 算法的坑填上,这样所有经典的图论算法就基本完善了。
上一篇:加权无向图的实现 加权无向图----Kruskal算法实现最小生成树 图的生成树是它的一棵含有其所有顶点的无环连通子图,加权图的最小生成树(MST)是它的一棵权值最小的生成树。 切分:图的一种切分是将图的所有顶点分为两个非空且不重合的两个集合。横切边是一条连接两个属于不同集合的顶点的边。 切分定理:在一幅加权图中,给定任意的切分,它横切边中权重最小者必然属于图的最小生成树。 切分定理是解决最小生成树问题的所有算法的基础。 Prim算法能够得到任意加权连通无向图的最小生成树。 数据结构设计: 采用一
Farmer John has been elected mayor of his town! One of his campaign promises was to bring internet connectivity to all farms in the area. He needs your help, of course. Farmer John ordered a high speed connection for his farm and is going to share his connectivity with the other farmers. To minimize cost, he wants to lay the minimum amount of optical fiber to connect his farm to all the other farms. Given a list of how much fiber it takes to connect each pair of farms, you must find the minimum amount of fiber needed to connect them all together. Each farm must connect to some other farm such that a packet can flow from any one farm to any other farm. The distance between any two farms will not exceed 100,000.
STP(生成树协议)是一个二层管理协议。在一个扩展的局域网中参与STP的所有交换机之间通过交换桥协议数据单元bpdu(bridge protocol data unit)来实现;为稳定的生成树拓扑结构选择一个根桥;为每个交换网段选择一台指定交换机;将冗余路径上的交换机置为blocking,来消除网络中的环路。
生成树:给定无向图G=(V,E),连接G中所有点,且边集是E的n-1条边构成的无向连通子图称为G的生成树(Spanning Tree),而边权值总和最小的生成树称为最小生成树(Minimal Spanning Tree,MST)。
codeforces联想杯D题,链接:https://codeforces.com/gym/102623/problem/D
HDU 1102 Constructing Roads(最小生成树-Prim) 最常见的,将已建成的路的权值设置为0,求最小生成树! HDU 1162 Eddy's picture(最小生成树-Prim) 裸题,联系敲板子吧! POJ 2560 Freckles(最小生成树-Kruskal) 裸题 POJ 2728 Desert King(01分数规划+二分+最小生成树-Prim) 0/1线性规划,二分做题!这个题得刷! POJ 1679 The Unique MST(次
STP(Spanning Tree Protocol)生成树协议 协议标准为IEEE制定的802.1D 通过传输BPDU报文(Bridge Protocol Data Unit 桥协议数据单元),来保证设备完成生成树的计算过程 其中BPDU分为两类:配置BPDU、TCN BPDU
领取专属 10元无门槛券
手把手带您无忧上云