随着Python编程语言的流行和普及,越来越多人对如何应用Python做金融数据分析和量化交易充满兴趣。但是不少人对量化投资本身存在一定的误解或认识不清,有的人过于异想天开,认为可以躺着挣钱(怕是只有岛国老师吧);有的人则因循守旧,认为没啥卵用;也有的人盲目追求模型的复杂性,在编程和数学中迷失了方向。
我们展示了如何将一个诺贝尔经济学奖获奖理论应用于股票市场,并使用简单的Python编程解决由此产生的优化问题。
“从长期来看,人工智能和区块链等技术的进步将在银行业的发展中扮演重要的角色……为了保持竞争力,银行需要在后台更新技术,以便在前端提供无缝的体验,因为无论用户界面多么流畅,客户都不会容忍花哨的应用程序。”
我们都知道,最近几年AI创业几乎呈指数级增长。那么AI领域的投资规模到底有多少大?这些AI创业公司的规模如何?对他们来说最有前途的市场是哪些?
问:现在上有关numeric analysis的课时,都用Python,实际工作时候呢?
Python作为一种多用途的编程语言,在量化分析领域也展现出了强大的应用能力。通过Python,我们可以对金融市场数据进行获取、清洗、分析和可视化,从而进行量化交易、风险管理和投资决策。本文将从入门到精通,带领读者深入探索Python在量化分析中的实战应用,通过案例解析详细介绍Python量化分析的技术原理和实现过程。
“量化投资”是指投资者使用数理分析、计算机编程技术、金融工程建模等方式,通过对样本数据进行集中比对处理,找到数据之间的关系,制定量化策略,并使用编写的软件程序来执行交易,从而获得投资回报的方式。其核心优势在于风险管理更精准,能够提供超额收益。
近来营长看到朋友圈中大咖集结、开启什么「熊市破冰之旅」,不得不说,甚是羡慕。但营长深知,“寒冬”不宜出远门,仍需在家埋头苦读,潜心钻研。
本案例适合作为大数据专业数据清洗或数据可视化课程的配套教学案例。通过本案例,能够达到以下教学效果:
风险价值 (VaR) 是一种统计数据,用于量化公司、投资组合在特定时间范围内可能发生的财务损失程度
现在Python使用的场景非常多,特别是数据采集、机器学习、数据科学领域,Python几乎是统治级别的存在。
如何使用Python通过蒙特卡洛模拟自动计算风险值(VaR)来管理投资组合或股票的金融风险。
在当今金融市场的竞争激烈和信息爆炸的环境下,投资者和交易员需要借助科技手段来提高决策效率和交易策略的精准度。而量化分析作为一种基于数据和算法的交易策略,正逐渐成为市场主流。Python作为一种简洁、易学、功能强大的编程语言,成为了量化分析的首选工具之一。
近年来,股市并未迎来大牛市,相反,我们正面临着一个熊市,行情相当不佳。尽管股市一在3000点的心理阻力,左右徘徊,但随后又出现了下跌的趋势,让投资者备受挑战。
随着科技的进步,人工智能(Artificial Intelligence,AI)正逐渐渗透到各个行业中,其中包括金融领域。
BigQuant – 你的人工智能量化平台 – 可以无门槛地使用机器学习、人工智能开发量化策略,基于python,提供策略自动生成器
大数据文摘出品 编译:蒋宝尚 在自动化的新时代,程序员的角色变得越来越重要。多年来,投资银行也不断招募顶级程序员,以帮助其交易员用软件执行策略。这也意味着,如果仅仅掌握华尔街的行话,那么你将不再能够满足投行分析师的岗位需求。 负责领导北美市场和证券服务部门的Lee Waite表示,从七月份开始,计算机编程语言将作为银行分析师培训课程的一部分。 Waite在接受采访时说:“我们正在更快的融入日益变化的世界,至少加强对编程的理解是非常有价值的。 金融交易的日益数字化,意味着金融公司已经越来越重视数字工具的采用,
如果你对算法交易,对冲基金,大数据感兴趣,那么,今天的推文你一定会感兴趣。Man Group首席执行官Luke Ellis做客《Masters in Business》进行了3个多小时的对话访谈。
但是读过的每一本技术书籍,都内化在手指上了,只要给个键盘,就能给它实现,投资比非常爆表
在当今金融市场的快速变化中,量化交易凭借其高效、精准的特点,逐渐成为金融界的新宠。而Python,作为量化交易领域的得力助手,为工程师们提供了强大的技术支持。本文将深入解析Python量化交易工程师的培养之路,带领读者走进这个金融高薪领域。
将价格动态转换为收益(2),用几何时间序列(4)计算期望收益(3),而不是算术平均(收益率的波动越大,算术平均和几何平均之间的差异越大)。
接上篇,我们已经爬下来了所有的基金年报。这篇我们来说明怎么通过python批量获取全部基金经理的观点,用到的数据就是所有的基金年报,还没爬或者还不知道怎么爬的可以看看上一篇。
据wind资讯,摩根大通要求基金经理必须学python。对于传统的基金经理而言,还是蛮有挑战的事情。怎么看这件事及其影响呢?其他机构会跟进吗?
这是一份由J.P.Morgan纽约办公室所开发的Python训练课程。你可以通过这些课程知道J.P. Morgan希望其分析师和交易员知道什么。
吃瓜群众:10年翻400倍?!这怎么可能?!肯定是标题党?! 回答:绝对不是。后面会附上原始数据、代码、结果,用数字说话。 吃瓜群众:那这个策略是不是非常复杂? 回答:不复杂。这个策略非常简单,简单到一句话就能讲清楚。 邢不行是经管之家(原人大经济论坛)「量化投资」版块的版主,毕业于香港科技大学,热门教程《量化小讲堂》作者。 今天,邢老师给大家分享一个策略,一个在过去10年可以让你的本金翻400倍的选股策略。 选股条件 这个策略非常简单,简单到只用了一个选股条件。但是这个选股条件在众多其他条件中,却是最
让我们进行一个常见的分析,您可能自己就可以完成这个分析。假设您想分析股票绩效,那么您可以: 在 Yahoo 金融专区找一支股票。 下载历史数据,保存为 CSV 文件格式。 将 CSV 文件导入 Excel。 进行数学分析:回归、描述性统计或使用 Excel Solver 工具进行线性优化。 很好,但本文为您展示一种更简单、更直观、功能更强大的方法,使用 IPython 和 pandas 进行同种分析。 工具准备 IPython 库是使用 Python 的数据科学家的重要工具之一。该工具与 Excel 的最
可视化技术在任何投资分析中都是一种关键要素。今天公众号为大家介绍一个基于三角形图的Python项目,用于可视化长期投资指标!
量化投资与机器学习微信公众号,是业内垂直于量化投资、对冲基金、Fintech、人工智能、大数据等领域的主流自媒体。公众号拥有来自公募、私募、券商、期货、银行、保险、高校等行业30W+关注者。 公司介绍 上海鸣熙资产管理有限公司成立于2014年(私募投资基金管理人登记证P1033450),是一家依靠数学与人工智能进行量化投资的对冲基金,是国内知名的专注于股票、期货和期权高频交易机构。核心团队成员来自于DE shaw、 Morgan Stanley、Google、微软、北清复交等海内外知名公司和高校。鸣熙资产
《State of Data Science 2021》发展报告中,报告主要从数据科学的领域,分别从商业环境和学术机构对数据科学的看法,以及学生对未来规划等这些论点进行研究。
目前,金融市场总是变幻莫测,充满了不确定因素,是一个有许多投资风险的市场。这与其本身的市场规律和偶然性有关,金融危机、国家政策以及自然灾难等都会影响到金融市场,均会影响投资的收益情况。所以投资者总是希望能够找到应对的方法来减少投资的风险而增加收益。随着老百姓对合理的财富分配理论有着迫切的需求,学会优化投资理财,做到理性投资,是当前投资者最关心的问题。
@xlzd 比较全能的Python大牛,精通爬虫、后端 @廖雪峰 这个,相信大家都看过老师的入门教程 @Crossin Crossin的编程教室创始人,帮助很多人入门Python @Coldwings 搞科研的就是不一样 @灵剑 已回答2166问题,擅长的不仅是Python @何明科 数据冰山专栏的作者,文章质量没话说 @leoxin 每天更新公众号菜鸟学python ,作为工作党不容易啊 @刘志军 写过Python各方面,混迹各大圈子
作为投资者,我们常听到的一句话是“不要把鸡蛋放入同一个篮子中”,可见分散投资可以降低风险,但如何选择不同的篮子、每个篮子放多少鸡蛋,便是见仁见智的事情了,量化投资就是解决这些问题的一种工具。
萌新整理了知乎上值得关注的Python大佬,来看看吧~ 综合类 @xlzd 比较全能的Python大牛,精通爬虫、后端 @廖雪峰 这个,相信大家都看过老师的入门教程 @Crossin Crossin的编程教室创始人,帮助很多人入门Python @Coldwings 搞科研的就是不一样 @灵剑 已回答2166问题,擅长的不仅是Python @何明科 数据冰山专栏的作者,文章质量没话说 @leoxin 每天更新公众号菜鸟学python ,作为工作党不容易啊 @刘志军 写过Python各方面,混迹各大圈子 爬虫类
风险价值(VaR)是金融领域广泛使用的风险度量,它量化了在特定时间范围内和给定置信度水平下投资或投资组合的潜在损失。它提供了一个单一的数字,代表投资者在正常市场条件下可能经历的最大损失。VaR是风险管理、投资组合优化和法规遵从的重要工具。
【视频】Copula算法原理和R语言股市收益率相依性可视化分析 R语言时间序列GARCH模型分析股市波动率 【视频】量化交易陷阱和R语言改进股票配对交易策略分析中国股市投资组合 使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略 R语言量化交易RSI策略:使用支持向量机SVM R语言资产配置: 季度战术资产配置策略研究 R语言动量交易策略分析调整后的数据 TMA三均线股票期货高频交易策略的R语言实现 R语言时间序列:ARIMA / GARCH模型的交易策略在外汇市场预测应用 R语言基于Garch波动率预测的区制转移交易策略 r语言多均线股票价格量化策略回测 使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略 Python基于粒子群优化的投资组合优化研究 R语言Fama-French三因子模型实际应用:优化投资组合 R语言动量和马科维茨Markowitz投资组合(Portfolio)模型实现 Python计算股票投资组合的风险价值(VaR) R语言Markowitz马克维茨投资组合理论分析和可视化 R语言中的广义线性模型(GLM)和广义相加模型(GAM):多元(平滑)回归分PYTHON用RNN神经网络LSTM优化EMD经验模态分解交易策略分析股票价格MACD R语言深度学习:用keras神经网络回归模型预测时间序列数据 【视频】CNN(卷积神经网络)模型以及R语言实现回归数据分析 Python TensorFlow循环神经网络RNN-LSTM神经网络预测股票市场价格时间序列和MSE评估准确性 数据分享|PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子 Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析 Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类 RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测 结合新冠疫情COVID-19股票价格预测:ARIMA,KNN和神经网络时间序列分析 深度学习:Keras使用神经网络进行简单文本分类分析新闻组数据 用PyTorch机器学习神经网络分类预测银行客户流失模型 PYTHON用LSTM长短期记忆神经网络的参数优化方法预测时间序列洗发水销售数据 Python用Keras神经网络序列模型回归拟合预测、准确度检查和结果可视化 Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析 R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告 R语言深度学习:用keras神经网络回归模型预测时间序列数据 Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类 R语言KERAS深度学习CNN卷积神经网络分类识别手写数字图像数据(MNIST) MATLAB中用BP神经网络预测人体脂肪百分比数据 Python中用PyTorch机器学习神经网络分类预测银行客户流失模型 R语言实现CNN(卷积神经网络)模型进行回归数据分析 SAS使用鸢尾花(iris)数据集训练人工神经网络(ANN)模型 【视频】R语言实现CNN(卷积神经网络)模型进行回归数据分析 Python使用神经网络进行简单文本分类 R语言用神经网络改进Nelson-Siegel模型拟合收益率曲线分析 R语言基于递归神经网络RNN的温度时间序列预测 R语言神经网络模型预测车辆数量时间序列 R语言中的BP神经网络模型分析学生成绩 matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类 R语言实现拟合神经网络预测和结果可视化 用R语言实现神经网络预测股票实例 使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测 python用于NLP的seq2seq模型实例:用Keras实现神经网络机器翻译 用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类
交易过程是一个复杂的过程,包括股票选择,策略设计和投资组合创建等多个步骤。在这里,我们将重点关注其中的一个步骤,即计算具有 n 个股票的投资组合的预期回报和潜在风险。 单只股票的预期回报 投资组合的预期收益提供了可以从投资组合中获得多少回报的估计。风险评估给出了投资者在持有这个投资组合时所需要承担的风险估计。投资组合的回报和风险都是取决于单只股票的回报和风险,及其单只股票在整个投资组合中的组成份额。 任何股票的风险和回报都是可以通过一些特定的参数进行控制的,所以投资者可以通过调整某些特定的参数将他/她的投资
随着科技的不断发展,自动化交易成为了投资者们追逐的一种高效、智能的投资方式。Python作为一种简洁、灵活且功能强大的编程语言,被广泛应用于自动化交易领域。本文将介绍如何使用Python进行自动化交易,并提供一些示例代码。
经常有一些专家告诉你,定投风险小,长期能获得不错的收益。因为投资者在高点时买入的份额较少,而在低处买入的份额较多。
量化投资与机器学习微信公众号,是业内垂直于量化投资、对冲基金、Fintech、人工智能、大数据等领域的主流自媒体。公众号拥有来自公募、私募、券商、期货、银行、保险、高校等行业30W+关注者,荣获2021年度AMMA优秀品牌力、优秀洞察力大奖,连续2年被腾讯云+社区评选为“年度最佳作者”。 今天是3月15日,公众号为全网Quant带来一期特别策划内容——量化圈的那些割韭菜的人和事。 希望大家以后避免踩雷! 『假』 大师 这一趴真的不想给很多人蹭热度! 总结下来就是:太多了! 『假』 策略 在前
量化,一个横跨多个学科领域的工作。已经在不同场合,听了无数次的三座大山:较好的数学功底、编程技能、金融知识。
【导读】一个企业的盈利与其销售市场部门密不可分,传统的销售手段是销售人员逐个联系现有或潜在的顾客,这种方式不仅耗时耗力,而且不可避免地会有疏漏,不能够精准地联系到购买潜力较大的顾客。在本文中,Sai
👆点击“博文视点Broadview”,获取更多书讯 618马上就要来了,又到了囤书的好日子,这个时候,福利必须到位! 博文菌为大家努力争取来了200张当当购书优惠券,希望能帮助大家开启省省省的快乐之旅! ATF8PV(当当20元优惠码) 当当每满100-50 再叠加20元优惠码 实付100可用 花80元买原价200元的书 使用时间:5.25-6.3 数量有限,先买就是赚到! 如果你不知道最近有哪些好书值得买,那就看看下面这几本吧,贴心的博文菌已经为你整理好了一份近期值得买的爆款新书书单,快来看看吧
根据彭博社消息, Otto 联合创始人Lior Ron重新回到 Uber 领导 Uber Freight 业务。据了解,Lior Ron曾在今年三月离开Uber,而Lior Ron回归之际,正是 Uber 收购 Otto Trucking 接近尾声的时候,作为收购的一部分,Otto Trucking 的股东将获得 Uber Freight 的股份。之前Uber曾收购Otto 的自动驾驶业务,曾受到 Waymo 的指控,称 Otto 与 Uber 策划窃取商业机密案。(via.PingWest)
摘要: 本篇文章是”Python股市数据分析”两部曲中的第二部分。在本篇文章中,我们讨论了均线交叉策略的设计、回溯检验、基准测试以及实践中可能出现的若干问题,并结合Python代码实现了一个基于均线交叉的交易策略系统。 注意:本篇文章所涉及的看法、意见等一般性信息仅为作者个人观点。本文的任何内容都不应被视为金融投资方面的建议。此外,在此给出的所有代码均无法提供任何保证。选择使用这些代码的个人需自行承担风险。 交易策略 我们把在未来条件满足时将被终止的交易称为未平仓交易。多头仓位是指在交易过程中通过金融商品增
以前不懂编程,想做量化投资做不了。现在有了ChatGPT,借助GP4强大的编程能力,即使没有任何编程基础,也完成可以做出简单的量化投资。
事情是这样的。摩根大通位于伦敦的首席投资办公室(Chief Investment Office)曾指派量化专家为其合成信贷组合构建一个新的在险价值模型。这种模型常用于市场风险测量和管理。2012年1月,这个新模型被摩根大通正式采用。
量化投资与机器学习微信公众号,是业内垂直于量化投资、对冲基金、Fintech、人工智能、大数据等领域的主流自媒体。公众号拥有来自公募、私募、券商、期货、银行、保险、高校等行业30W+关注者,荣获2021年度AMMA优秀品牌力、优秀洞察力大奖,连续2年被腾讯云+社区评选为“年度最佳作者”。 公司介绍 上海思晔投资管理有限公司(简称“思晔投资”)成立于2013年5月,总部位于中国上海。作为国内多策略私募证券投资基金的先行者,思晔投资自成立以来坚持投研驱动公司发展的道路,专注于中国市场股票、债券、商品以及前沿衍
领取专属 10元无门槛券
手把手带您无忧上云