首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    1. c6--环结构补氢

    PDB(Protein Data Bank)是一种最常用于存储蛋白质结构的文件。而我们在研究蛋白质构象时,往往更多的是考虑其骨架,因此在很多pdb文件中直接去掉了氢原子。但是在我们构建蛋白质力场时,又需要用到这些氢原子。因此这个流程就变成了,在预测蛋白质构象时,不考虑氢原子,然后在力场构建的步骤去添加氢原子。由于氢原子的位置相对其连接的重原子来说,是相对比较固定的,而且最低能量位置也比较容易找到。因此常见的策略是,先在大致合理的位置补充上氢原子,再通过能量优化算法去优化氢原子的位置,使其处于一个更加合理的最终位置。而我们得到了这个氢原子的最终位置和重原子的位置之后,就可以对该蛋白质进行分子动力学的演化。本文主要介绍上述提到的,为蛋白质分子在大致合理的位置添加氢原子的算法。

    01

    tf.image.non_max_suppression

    贪婪地选择按得分降序排列的边界框子集。删除与先前选择的框具有高交叉-过度联合(IOU)重叠的框。边界框以[y1, x1, y2, x2]的形式提供,其中(y1, x1)和(y2, x2)为任意对角对角框角的坐标,坐标可以标准化(即,位于区间[0,1]或绝对区间。注意,这个算法不知道原点在坐标系中的什么位置。注意,这个算法对于坐标系的正交变换和平移是不变的;因此,坐标系统的平移或反射会导致算法选择相同的框。这个操作的输出是一组整数,索引到表示所选框的边界框的输入集合中。然后使用tf可以获得与所选索引对应的边界框坐标。收集操作。例如:selected_indices = tf.image。non_max_suppression(box, scores, max_output_size, iou_threshold)选择ted_boxes = tf。收集(盒、selected_indices)

    02
    领券