以下密度图与柱状图都是用Seaborn实现完成。...kedeplot实现密度图: sns.set_style("whitegrid") sns.kdeplot(train_data[train_data['Survived']==1]['Age'],...distplot实现柱状图: sns.distplot(merged_data_normal['Age'],kde=False, bins=20, hist = True,norm_hist=False...data=train_data, hue='Survived') plt.title(var) plt.legend(loc="upper right") plt.show() plt.title : 设置图的名字
分布(二)利用python绘制密度图 密度图 (Density chart)简介 1 密度图用于显示数据在连续数值(或时间段)的分布状况,是直方图的变种。...由于密度图不受所使用分组数量的影响,所以能更好地界定分布形状。...seaborn as sns import matplotlib.pyplot as plt # 导入数据 df = sns.load_dataset('iris') # 利用kdeplot函数绘制密度图...fig, ax = plt.subplots(1,3,constrained_layout=True, figsize=(12, 4)) # 水平密度图 ax_sub = sns.kdeplot(y=...,也可通过gaussian_kde构建密度函数后再通过matplotlib进行简单绘制,并通过修改参数或者辅以其他绘图知识自定义各种各样的密度图来适应相关使用场景。
相关原理见:https://zhuanlan.zhihu.com/p/39424587
直方图和密度图 一、直方图 直方图反映的是一组数据的分布情况 0x1 绘制直方图 hist方法可以用来绘制直方图,为了使图像更清晰,可以指定每个柱间宽度: s = Series(np.random.randn...二、密度图 0x1 绘制密度图 生成密度图只需要在plot的时候指定kind=‘kde’即可: ? 可以看到是反映出一些数据的分布密度。可以看到,在0附近的数据占到了全部数据的进40%
来源:气象水文科研猫 方法1: import matplotlib.pyplot as plt import numpy as np from scipy.st...
Seaborn 的 kdeplot() 函数是 Python 中绘制密度图的方式之一,Matplotlib 在现阶段则没有具体的绘制密度图的函数,一般是结合 Scipy 库中的 gaussian_kde...其他两种方法较 kdeplot () 函数麻烦一些,但这两种方法绘制出的密度图更为清楚。 注意,这里的核密度估计结果都是通过高斯核函数得到的。...下图为对同一组数据使用不同核函数绘制的核密度图结果。...,即用一个连续渐变颜色条表示具体的绘图数值,且对应颜色填充在密度图曲线范围内。...——基于Python[M].北京:人民邮电出版社,2023:49-58.
最近探索出来一个在Python中创建热力图非常高效的方法,使用folium包来创建热力图,实际效果非常赞,过程简单,代码量少。...leaflet地图: 动态地理信息可视化——leaflet在线地图简介 动态地理信息可视化——散点地图系列 动态地理信息可视化——leaflet构造路径图 动态地理信息可视化——leaflet填充地图...在线地图进阶宝典——高级交互特性 leaflet的小搭档leaflet.minicharts来了,从此动态地图又多了一些乐趣~~~ folium包支持多种类型的空间可视化形式,今天这一篇仅就其中的热力密度图进行分享...map_osm = folium.Map(location=[35,110],zoom_start=5) HeatMap(data1).add_to(map_osm) file_path = r"D:/Python...posi = pd.read_excel("D:/Python/File/Cities2015.xlsx") posi = posi.dropna() ?
但是当数据量大且分布比较集中的时候就没那么容易确定数据的分布了,这时候可以通过绘制密度或是热力图直观获取数据分布情况。...python中的 matplotlib 库中提供了 hexbin 函数绘制密度图,但是我还是更喜欢 R 语言中绘制密度图的方式,比如自带的 smoothScatter 函数以及 ggplot2 中的 geom_bin2d...上述函数利用核密度估计生成用颜色密度来表示点分布的散点图。...利用美国历年的龙卷数据,绘制美国龙卷风的分布图,直接上代码: library(maps) library(ggplot2) library(ggmap) data <- read.csv('1950-...同时附上 python 版的方法: from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt import pandas
点击下方公众号,回复资料,收获惊喜 1、前言 seaborn是一款非常强大的画图工具,可以画很多种图,除了截图中展示的,下面还有很多,大家可以尝试一下其他的。...= fig.add_axes([1,1,1.5,1.5])#画层 sns.distplot(cmip6,#数据 color='red',#概率密度线的颜色...ax=ax, label="tas-temp",#蓝色线条的名称 ) 这样,最简单的PDFs就画好了,横坐标是nc文件中对应的温度值,纵坐标为概率,但是这个图太丑了...当增加参数kde = True时,图片没有变化,kde表示是否绘制高斯核密度估计值,默认是Ture,如果为False,则图中的曲线就消失了,且纵坐标发生了变化,请注意看效果。 ?...然后再给这张图增加一个标签: ax.set_title( "Year Period:2005-2015",loc='center', fontsize=20 ) ?
在R语言ggplot2以及其拓展包能够较为简单的实现各类空间可视化作品的绘制,在寻找Python进行空间绘制包的同时,也发现如geopandas、geoplot等优秀包,今天的推文就简单使用geoplot...库绘制空间核密度估计图,涉及的知识点如下: geoplot库pointplot()函数绘制空间点图 geoplot库kdeplot()函数绘制空间核密度估计图 所使用的数据为全国PM2.5站点数据和中国地图文件...kdeplot()绘制空间核密度估计图 由于geoplot的高度封装,我们直接使用kdeplot()函数进行绘制,具体代码如下: fig,ax = plt.subplots(figsize=(8,5),...就完成了空间核密度估计的可视化绘制,所涉及的绘图函数相对简单,大家看看官网教程就可以快速掌握。...总结 Python-geoplot库对一些空间图表可以较为迅速的绘制出结果,可以说是相对简单,但到实践过程中,也发现一些问题(完全自己绘制过程中的感悟啊,可能存在个人原因啊): 由于高度封装,相对某些绘图元素
关系(六)利用python绘制二维密度图 二维密度图(2D Density Chart)简介 二维密度图可以表示两个数值变量组合的分布,通过颜色渐变(或等高线高低)表示区域内观测值的数量。...():x.max():nbins*1j, y.min():y.max():nbins*1j] zi = k(np.vstack([xi.flatten(), yi.flatten()])) # 绘制密度图...plt.pcolormesh(xi, yi, zi.reshape(xi.shape), shading='auto') plt.show() 定制多样化的二维密度图 自定义二维密度图一般是结合使用场景对相关参数进行修改...seaborn主要利用kdeplot绘制二维密度图,可以通过seaborn.kdeplot[1]了解更多用法 import seaborn as sns import matplotlib.pyplot...gaussian_kde基础上)快速绘制二维密度图,并通过修改参数或者辅以其他绘图知识自定义各种各样的二维密度图来适应相关使用场景。
ggridges包提供了geom_density_ridges_gradient()函数,用于画核密度估计峰峦图 1数据结构 这里我们用到的是ggridges内了数据lincoln_weather,该数据是关于每个月各种天气指标...包括温度湿度等等,其中我们要用到的两列为平均温度mt和月份mon,这是我简化后的数据,便于展示 与单数据系列不同的是这里要提供两个变量,x轴对应温度,即统计变量,y轴为分类变量 image.png 2绘制峰峦图代码...scale ;The extent to which the different densities overlap can be controlled with the parameter.该参数控制的是密度图之间重叠的程度...colorRampPalette(rev(brewer.pal(11,'Spectral')))(32)) image.png image.png image.png 3 fill = stat(x)根据计算出来的密度大小着色...colours = colorRampPalette(rev(brewer.pal(11,'Spectral')))(32)) image.png 4用stat_density_ridfes()画峰峦图,
前面我也给大家简单介绍过 ☞R计算mRNA和lncRNA之间的相关性+散点图 ☞R语言绘图:复杂散点图绘制 相信大家在读paper的时候也见到过下面这种类型的图 这张图在传统的相关性散点图的基础上还多了一个直方图...今天我们就来带大家来重现这样的图。...sat.act) 首先我们用默认参数来画图看看效果 #绘制SATV和SATQ之间的相关性散点图和直方图 with(sat.act,scatter.hist(SATV,SATQ)) 这个是默认参数画出来的图,...SATQ", #纵坐标名 title="SATQ vs SATV" #修改主标题 ) 接下来我们整点高级的,数据中还包含有性别这一列,我们用不同的颜色来区分两种性别,并展示密度图
前面介绍了基础直方图的绘制教程,接下来,同样分享一篇关于数据分布的基础图表绘制-核密度估计图。具体含义我们这里就不作多解释,大家可以自行百度啊,这里我们主要讲解R-python绘制该图的方法。...本期知识点主要如下: R-ggplot2.geom_density()绘制方法 Python-seaborn.kdeplot()绘制方法 各自方法的图片元素添加 R-ggplot2.geom_density...()绘制方法 我们还是使用前几期绘制的数据,关注公众号DataCharm,后台回复柱形图 ,即可获取练习数据啦。...fill=True,edgecolor="black", linewidth=2,ax=ax) #title ax.text(.08,1.1,"Base Charts in Python...总结 本期将R-ggplot2绘图和Python-seaborn 进行了汇总整理,一方面因为内容较为基础,另一方面,大家也可以对比下R-ggplot2系列 和Python-matplotlib系列绘图。
原创 黄小仙 上次分享了小提琴曲线(violin plot)的作图方法,今天小仙同学给大家介绍一下如何用R画出漂亮的密度图(density plot)。 Step1....导出高清图的方法在这里: R语言作图技巧——导出高清图 R语言作图系列还有: R语言作图——Beeswarm(蜜蜂图) R语言作图——Circular bar plot(环形柱状图) R语言作图...Line plot with colored background R语言作图——Scatter plot with marginal density R语言作图——Dumbbell plot(哑铃图)...R语言作图——Slope chart(坡度图) R语言作图——Split violin plot R语言作图——Violin plot with dot R语言作图——Line plot with...error R语言作图——Ridgeline plot(山脊图) R语言作图——Dot plot(点图) R语言作图——Histogram R语言作图——Violin plot R语言作图—
之前看到师妹画的一张图很好看,是等高线图和密度图的组合。 今天自己模仿了一下,幸得师妹提名:云朵图。 不同分组的点用类似于等高线图的形式呈现,点越密颜色越深。 上侧和右侧为点的密度分布图。
图片同时展示几个其他文章的例子图片图片图片空间区域识别之后,第二步需要单细胞空间的联合分析,这部分R版本就是Seurat或者RCTD,python版本的就用cell2location,下面展示一张示例图...,直接可以放在文章中:图片图片拿到这个结果之后,我们就需要绘制空间细胞类型密度分布图,需要示例数据的请留言:import sysimport scanpy as scimport anndataimport
之前在练习leaflet的时候没有找到R语言leaflet中的热力密度图接口函数,一直感觉很遗憾。...最近在Stack Overflow上面发现了leaflet包的一个插件leaflet.esri包,结合leaflet可以在R语言中提供非常完美的热力密度图解决方案,顿时觉得发现了新大陆,立马分享给大家具体的实现思路...leaflet") library("leafletCN") library("leaflet.extras") library("xlsx") mydata <- read.xlsx( "D:/Python...动态地理信息可视化——leaflet在线地图简介 动态地理信息可视化——散点地图系列 动态地理信息可视化——leaflet构造路径图 动态地理信息可视化——leaflet填充地图 Leaflet在线地图进阶宝典
如何计算一维和二维的最高密度区域和以一个协变量为条件的单变量密度函数核估计以及多模态回归?小编今天给大家推荐的一个超强工具即可解决上述问题。...详细内容如下: R-hdrcde包介绍 R-hdrcde包样例样式 R-hdrcde包介绍 R-hdrcde包为最高密度区域和条件密度估计(Highest Density Regions and Conditional...,这些函数主要用于估计和绘制最高密度区域和条件密度估计。...rnorm(200,4,1)) y <- c(rnorm(200,0,1),rnorm(200,4,1)) hdr.boxplot.2d(x,y) hdr.boxplot.2d hdr.den():具有最高密度区域的密度图...总结 今天推送了一篇简单的用于计算和绘制最高密度区域和条件密度估计的优秀工具-R-hdrcde,希望可以帮助到大家,更多案例可参考官方网址~~ 参考资料 [1] R-hdrcde介绍: https://
image.png 前几天有一个读者在公众号留言问上面这幅图应该如何实现,我想到一个办法是利用ggplot2分别画散点图和密度图,然后利用aplot包来拼图,aplot包是ggtree的作者新开发的一个包...今天的内容主要参考了微信文章 aplot包:让你画出更复杂的图 好了下面就开始介绍具体的实现过程 首先是模拟数据 生成两列符合正态分布的数据,然后组合成一个数据框 x<-rnorm(500,0,1)...image.png 接下来是密度图 ggplot(df,aes(x))+ geom_density(fill="grey",alpha=0.5)+ scale_y_continuous(expand...image.png y轴的密度分布也是这样画,下面就不重复了 接下来是拼图 library(ggplot2) library(aplot) p1<-ggplot(df,aes(x,y))+ geom_point...image.png 遇到的问题是:如何给密度图的右下角的一部分填充另外一个颜色,这个我暂时还不知道如何实现?大家如果知道如何实现欢迎留言呀! 欢迎大家关注我的公众号 小明的数据分析笔记本
领取专属 10元无门槛券
手把手带您无忧上云