首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    KDD 2022 | 编程指南:生命科学中的图神经网络

    本文介绍由亚马逊的研究团队推出的应用于生命科学的图神经网络指南《Graph Neural Networks in Life Sciences: Opportunities and Solutions》,这个工作发表在2022年数据挖掘顶会KDD上。图结构数据在生命科学以及医疗场景无处不在,最近很多研究把原来依赖于描述性数据分析的问题转化成依赖于生物网络的问题,例如图神经网络 (GNNs)。与其它领域相比,生命科学的问题有其自身的独特性和细微的差别。首先,这份指南比较全面地介绍了生命科学中的各种图结构数据,基于这些数据的生物和医学问题,以及相关的基于图机器学习的算法;随后,作者提供了四类基于GNN的解决方案的编程指南,每一种方案都提供了python代码和比较详细的说明,这四类问题包括:1)小分子属性预测;2)大分子属性和功能预测;3)基于双图(bi-graph)的蛋白质-配体对亲和力预测;4)利用知识图谱进行医学预测。所有代码都基于深度学习库DGL-lifesci和DGL-KE。

    03

    AAAI2021 | 图神经网络的异质图结构学习

    近年来,异质图神经网络引起了广泛关注并应用在各种下游任务上。现有异质图神经网络模型通常依赖于原始的异质图结构并暗含着原始图结构是可靠的假设。然而,这种假设往往并不现实,异质图结构普遍存在噪声和缺失的问题。因此,如何为异质图神经网络学习一个合适的图结构而不是依赖于原始图结构是一个关键问题。为解决这一问题,本文首次研究了异质图结构学习(Heterogeneous Graph Structure Learning)问题,并提出了HGSL框架来联合学习适合分类的异质图结构和图神经网络参数。HGSL 通过挖掘特征相似性、特征与结构之间的交互以及异质图中的高阶语义结构来生成适合下游任务的异质图结构并联合学习 GNN参数。三个数据集上的实验结果表明,HGSL 的性能优于基线模型。

    02
    领券