首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    工业检测中黑白相机为什么比彩色工业相机更受青睐

    相机是机器视觉解决方案系统的核心部件,广泛应用于各个领域,尤其是用于生产监控、测量任务和质量控制等。工业数字相机通常比常规的标准数字相机更加坚固耐用。这是因为它们必须能够应对各种复杂多变的外部影响,如应用于高温、高湿、粉尘等恶劣环境。工业相机的分类形式有很多,下文将详细介绍几种常用类型的工业相机。   面阵相机与线阵相机的区别在于前者是以面为单位进行图像采集,可以直接获得完整的二维图像信息,后者的以“线”为单位,虽然也是二维图形,但长度较长,而宽度却只有几个像素。这是因为线阵相机的传感器只有一行感光元素。虽然面阵相机的像元总数较多,但分布到每一行的像素单元却少于线阵相机,因此面阵相机的分辨率和扫描频率一般低于线阵相机。

    03

    CIS相机在工业AOI的应用和发展

    随着现代工业制造技术发展,对产品的品质控制以及自动化生产的要求越来越高,机器视觉作为一项新兴的工业自动化技术在各行各业得到了广泛应用。机器视觉的主要功能为:作为自动化系统的“眼睛”,替代人工进行产品的识别、定位、缺陷检查、运动引导等工作,在高速流水线、危险环境、高重复性动作、高精密度检查等人力越来越难以胜任的场合发挥着重要作用。 作为机器视觉技术中非常重要的一个分支,自动光学检测(AOI,Automatic Optical Inspection)在工业化领域得到广泛应用,已成为现代制造业的必备环节,其克服了人工检查个体差异大、稳定性差(疲劳度与外界因素影响)、效率低下、重复性差等缺点,为制造业的产品质量控制与制造水平提升发挥着越来越大的作用。线阵扫描AOI技术的发展与现代化制造水平密切相关,伴随着光电成像技术发展不断在各个领域得到深入应用。1969年美国贝尔实验室的Willard S. Boyle和George E. Smith发明了CCD(Charge-coupled Device,电荷耦合器件)技术,实现了感应光线并将图像转变成数字信号的功能。有几家公司接续此一发明,包括快捷半导体(Fairchild Semiconductor)、美国无线电公司(RCA)和德州仪器(Texas Instruments)。快捷半导体的产品率先上市,于1974年发表500单元的线阵传感器和100×100像素的面阵传感器。随着线阵传感器的产品化,基于该技术的工业AOI技术迅速发展,在1975年便实现了商用化的设备。随后,在欧美与日本等发达国家,基于线阵平台的AOI技术蓬勃发展,在各个行业得到了广泛应用。 CIS(Contact Image Sensor,接触式图像传感器),是继线阵CCD、CMOS技术之后发展完善的一类新型光电成像传感器。其将柱状透镜(Rod Lens,如图1-1)、LED阵列光源、感光元件阵列、信号放大电路集于一体,由光源发出的光线经被扫描物反射后,通过柱状透镜投射聚焦于感光元件阵列,由感光元件阵列将光信号转化为电信号并经信号放大电路进行放大输出,经后端处理后直接形成扫描对象的完整影像。CIS工作原理如图1-2所示。由于CIS的整体集成性(省去了传统成像方式的光学镜头),传感器体积可有效控制,在设备便携性、安装调试、整体集成方面相比传统的“CCD/CMOS+光学镜头”方式优势明显,可见图1-3;采用LED光源阵列可有效控制设备功耗,使用寿命长,且无需预热;采用柱状透镜实现物体与感光元件1:1成像,无传统光学透镜的像场几何畸变,对物体高质量还原,在成像质量上优势明显[12]。CIS图像传感器最早被用于传真机、扫描仪等商用设备,随着技术进步发展,在金融机具、医疗设备、工业检测装备领域已得到越来越广泛的应用,具体应用领域如下表所示。需要说明的是,CIS图像传感器在工业领域针对平面产品(如玻璃、橡胶、薄膜等行业)的自动光学检测方面具有巨大的应用空间。

    05

    因子分析与主成分分析之间爱恨离愁。FA与FCA

    主成分分析和因子分析无论从算法上还是应用上都有着比较相似之处,本文结合以往资料以及自己的理解总结了以下十大不同之处,适合初学者学习之用。 1.原理不同 主成分分析基本原理:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个不相关的综合指标(主成分),即每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能(主成分必须保留原始变量90%以上的信息),从而达到简化系统结构,抓住问题实质的目的。 因子分析基本原理:利用降维的思想,由研究原始变量相关

    09

    Matlab - sort函数

    在Matlab中排序某个向量(一维)时,可以使用sort(A),其中A为待排序的向量,如果仅是用来排序A,那么直接使用sort(A)即可,如果排序后还需要保留原来的索引可以用返回值,即[B,ind]=sort(A),计算后,B是A排序后的向量,A保持不变,ind是B中每一项对应于A中项的索引。排序是安升序进行的。   在Matlab中,访问矩阵中的元素,一维用A(1)访问向量A的第一个元素;(下标从1开始);二维用A(1,2)访问A中第一行,第二列的元素。   由于在sort函数的结果中,是安升序排序的,要转换成降序,先用X=eye(n)生成一个n维的单位阵,然后用X=rot90(X)将其旋转为次对角线的单位阵,再用原来矩阵乘以X即可,如要讲A逆序排列采用如下步骤: X=eye(size(A)); X=rot90(X); A=A*X;  复制代码 假如a是一个2*n的矩阵,即两行. b=a(1,:); [c,pos]=sort(b); %pos为排序后的下标,c为第一行的排序结果 a(2,:)=a(2,pos); %第二行按照第一行排序的下标对应 a(1,:)=c;           %第一行结果重新赋给a的第一行  复制代码 以下适用于m*n的矩阵按第一行排序 [ b, pos ] = sort( a( 1, : ) ); a = a( :, pos ); X=magic(5) X = 17 24 1 8 15  23 5 7 14 16  4 6 13 20 22  10 12 19 21 3  11 18 25 2 9 >> [a,b]=sort(X,2) a = 1 8 15 17 24  5 7 14 16 23  4 6 13 20 22  3 10 12 19 21  2 9 11 18 25 b = 3 4 5 1 2  2 3 4 5 1  1 2 3 4 5  5 1 2 3 4  4 5 1 2 3 结果解释:  a是原来的矩阵x按照行,每行从小到大重新排列得到的新矩阵。  b告诉你重排的详细信息,也就是做了什么样的变动。  例如b的第一行显示3 4 5 1 2,那么将原矩阵X的第一行的第3 4 5 12个元素取出来,顺次排列,就变成a矩阵的第一行。 sort(X,2) 和sort(X,1)分别意思如下 x = 3 7 5 0 4 2 sort(x,2) ans = 3 5 7 0 2 4 按行重新排列原来的矩阵,从小到大 sort(x,1) ans = 0 4 2 3 7 5 按列重新排列原来的矩阵,从小到大

    03
    领券