为了计算两个矩阵相加,我们创建一个新的矩阵,使用 for 迭代并取出 X 和 Y 矩阵中对应位置的值,相加后放到新矩阵的对应位置中。在这个 python 程序中,我们有两个矩阵作为 A 和 B 。让我们检查矩阵顺序,并将矩阵存储在变量中。我们必须将和矩阵初始化为元素为零。现在,我们必须使用一个嵌套循环遍历控件的每一行和每一列中的每个元素。用for求矩阵中每个元素的和,用 python 加到矩阵中。显示输出矩阵。
算术运算是最基本的运算,看起来很简单,但也有一些需要注意的地方,本文中会依次介绍。
针对 Series 的重新索引操作 重新索引指的是根据index参数重新进行排序。如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行。不想用缺失值,可以用 fill_value 参数指定填充值。
操作系统:macOS Big Sur (11.6) Anaconda3:2021.05 python:3.7.3 Jupyter Notebook:5.7.8
sum是python中一个很实用的函数,但是要注意它的使用,我第一次用的时候,就把它这样用了:
程序分析:创建一个新的 3 行 3 列的矩阵,使用 for 迭代并取出 X 和 Y 矩阵中对应位置的值,相加后放到新矩阵的对应位置中。
字符串之间才能相加,所以输出结果的时候, i 和 j 都必须通过 str( ) 强行转换成字符串类型之后再相加。
深度学习:作为机器学习的一个子域,关注用于模仿大脑功能和结构的算法:人工神经网络。
线性代数对于理解机器学习和深度学习内部原理至关重要,线性代数是有关连续值的数学。许多计算机科学家在此方面经验不足,传统上计算机科学更偏重离散数学。这篇博文主要介绍了线性代数的基本概念,包括标量、向量、矩阵、张量,以及常见的矩阵运算,并且也有相应的Python代码实现。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sinat_35512245/article/details/78574306
Numpy 是用 python封装的科学计算库,是一个精简版matlab 。 下面总结下在模拟脊回归的超参数:收缩率,与权重参数的关系时,用到的一些numpy运算规则,顺便扩展下其他的相关运算。 1 矩阵相加 原来A和B还能这样相加,请看下列: A = np.array( [1,2,3] ) np.shape(A) (3,) B= np.array([ [10],[11]] ) np.shape(B) (2,1) A+B array([[11, 12, 13], [12, 13, 14]])
SUM 函数将值相加,可以将单个值、单元格引用或是区域相加,或者将三者的组合相加。例如: =SUM(A1:A3)将单元格 A1:A3 中的值加在一起,=SUM(A1:A3,B1:B3)将单元格 A1:A3 以及单元格 B1:B3 中的值加在一起。语法:SUM(number1,[number2],…),number1(必需):要相加的第一个数字。该数字可以是 4 之类的数字,A1 之类的单元格引用或 A1:A3 之类的单元格范围。number2(可选):要相加的第二个数字。可以按照这种方式最多指定 255 个数字。下面我们来看怎么通过 Python 使用 SUM 函数。代码如下:
👆点击“博文视点Broadview”,获取更多书讯 很多人都说背乘法表是他们教育经历中特别痛苦的一件事。问父母为什么要背乘法表,父母通常会说不背就不会做乘法。他们大错特错。 俄罗斯农夫乘法(Russian peasant multiplication, RPM)就是在不了解大部分乘法表的情况下进行大数相乘的方法。 这是一种算术方法,尽管它叫这个名字,但也可能是埃及人,或者与农民没什么关系。 RPM 的起源尚不清楚。一份名为《莱因德纸草书》的古埃及卷轴记载了该算法的一个版本,一些历史学家提出(几乎没有说
http://write.blog.csdn.net/mdeditor#!postId=77852727
Python 是一门易于学习、功能强大的编程语言。它提供了高效的高级数据结构,还能简单有效地面向对象编程。Python 优雅的语法和动态类型以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的理想语言。下面我们来介绍一下python列表相关的典型案例。
作者:乐雨泉(yuquanle),湖南大学在读硕士,研究方向机器学习与自然语言处理。
生活中所说的“空间”,就是我们所处的地方,它有三个维度,它里面有各种物体,这些物体各自遵守着一定的运动规则——注意,“空间”非“空”——或者说,这个空间制定了某些规则,里面的物体必须遵循。有时候我们也会画出一个相对小的范围,在这个范围内的对象类型单一,且遵循统一的规律,比如这几年风靡各地的“创客空间”,其中的对象就是喜欢创造的人,他们遵循的规律就是“创造,改变世界”。诚然,由人组成的“空间”总是很复杂的,超出了本书的研究范畴,我们下面要研究的是由向量组成的“空间”,即“向量空间”。
对于非向量化,我们要求得z的值,必须用到for循环,但是当数据量非常庞大的时候,for循环所用的时间会比较多,这个时候可以使用向量运算来提高速度
Numpy(Numeric Python)是一个用python实现的科学计算的扩展程序库。包括:1、一个强大的N维数组对象Array;2、比较成熟的(广播)函数库;3、用于整合C/C++和Fortran代码的工具包;4、实用的线性代数、傅里叶变换和随机数生成函数。提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理,以及精密的运算库。
文章首发于本人CSDN账号:https://blog.csdn.net/tefuirnever
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/78904700
前几天在Python最强王者交流群有个叫【Chloé】的粉丝问了一个关于Pandas中groupby函数的问题,这里拿出来给大家分享下,一起学习。
大数据时代的到来,使得很多工作都需要进行数据挖掘,从而发现更多有利的规律,或规避风险,或发现商业价值。
matrix的构造函数 动态开辟空间,实现添加矩阵。 析构函数 释放动态开辟的空间,防止内存泄露。 重载“+ - * /”运算符 为了方便输出 顺便实现 << 运算符
经常向我提问的同学应该知道,我一般不会直接给出代码,而是给你提供思路。本系列主打思路,基于同一思路,给出多种不同的解决方案,让你举一反三解决问题。
版权声明:本文为博主原创文章,允许转载,请标明出处。 https://blog.csdn.net/qwdafedv/article/details/82684218
大数据文摘作品,转载要求见文末 编译 | 沈爱群,徐凌霄,Aileen 在学习深度学习的课程时,数学知识十分重要,而如果要挑选其中最相关的部分,“线性代数”首当其冲。 如果你也跟本文作者一样,正在探索深度学习又困于相关数学概念,那么一定要读下去,这是一篇介绍深度学习中最常用线性代数操作的新手指南。 什么是线性代数在深度学习中,线性代数是一个非常有用的数学工具,提供同时操作多组数值的方法。它提供多种可以放置数据的结构,如向量(vectors)和矩阵(matrices, 即spreadsheets)两种结构,并
(1)一个是真正的bug。请注意range()方法的参数,此处不仅是希望以X矩阵式列表长度为循环的最大次数,而且,也是循环变量i的取值范围,i将会是X列表的索引标号。所以,它的起始值不应该是1,而应该是0,因为索引都是从0开始计数的。相应地len(X)也就无需再加1了。后面的嵌套循环亦如是。
It’s easy to index and slice NumPy arrays regardless of their dimension,meaning whether they are vectors or matrices. 索引和切片NumPy数组很容易,不管它们的维数如何,也就是说它们是向量还是矩阵。 With one-dimension arrays, we can index a given element by its position, keeping in mind that indices start at 0. 使用一维数组,我们可以根据给定元素的位置对其进行索引,记住索引从0开始。 With two-dimensional arrays, the first index specifies the row of the array and the second index 对于二维数组,第一个索引指定数组的行,第二个索引指定行 specifies the column of the array. 指定数组的列。 This is exactly the way we would index elements of a matrix in linear algebra. 这正是我们在线性代数中索引矩阵元素的方法。 We can also slice NumPy arrays. 我们还可以切片NumPy数组。 Remember the indexing logic. 记住索引逻辑。 Start index is included but stop index is not,meaning that Python stops before it hits the stop index. 包含开始索引,但不包含停止索引,这意味着Python在到达停止索引之前停止。 NumPy arrays can have more dimensions than one of two. NumPy数组的维度可以多于两个数组中的一个。 For example, you could have three or four dimensional arrays. 例如,可以有三维或四维数组。 With multi-dimensional arrays, you can use the colon character in place of a fixed value for an index, which means that the array elements corresponding to all values of that particular index will be returned. 对于多维数组,可以使用冒号字符代替索引的固定值,这意味着将返回与该特定索引的所有值对应的数组元素。 For a two-dimensional array, using just one index returns the given row which is consistent with the construction of 2D arrays as lists of lists, where the inner lists correspond to the rows of the array. 对于二维数组,只使用一个索引返回给定的行,该行与二维数组作为列表的构造一致,其中内部列表对应于数组的行。 Let’s then do some practice. 然后让我们做一些练习。 I’m first going to define two one-dimensional arrays,called lower case x and lower case y. 我首先要定义两个一维数组,叫做小写x和小写y。 And I’m also going to define two two-dimensional arrays,and I’m going to denote them with capital X and capital Y. Let’s first see how we would access a single element of the array. 我还将定义两个二维数组,我将用大写字母X和大写字母Y表示它们。让我们先看看如何访问数组中的单个元素。 So just typing x square bracket 2 gives me the element located at position 2 of x. 所以只要输入x方括号2,就得到了位于x的位置2的元素。 I can also do slicing. 我也会做切片。 So
使用嵌套列表和NumPy包的Python矩阵。矩阵是一种二维数据结构,其中数字按行和列排列。
数据不正确(格式不正确,数据不准确,数据缺失)我们做什么都是徒劳。数据清洗时数据分析的第一步,也是最耗时的一步。 数据清洗很枯燥,但是随着数据清理技巧越来越熟练,就有越有可能从他人无从下手的文档中获取
实例 41 题目 模仿静态变量的用法。 分析 所谓静态变量其实就是说它的作用域是整个程序。 代码 #!/usr/bin/env python # -*- coding: utf-8 -*- # @version : 1.0 # @Time : 2021/4/10 13:24 # @Author : cunyu # @Email : 747731461@qq.com # @Site : https://cunyu1943.site # 公众号 : 村雨遥 # @File : 41
矩阵相信大家都知道,是线性代数中的知识,就是一系列数集。顾名思义,数字组成的矩形,例如:
pip install jupyter notebook -i Simple Index
设置一个已经给定的矩阵的行列重复次数 , 根据给定的矩阵 , 进行指定的重复 , 生成新矩阵 ;
numpy是进行科学运算不可或缺的工具,很多其他科学计算的库也是基于numpy的,比如pandas
在前面的文章中我们讲到了回归模型和分类模型的评估指标,区分了准确率和精确率的区别,并且比较了精确率和召回率内在的联系。本篇文章我们再来学习另外一个评估方法,即混淆矩阵(confusion_matrix)。
1. K-近邻算法概述(k-Nearest Neighbor,KNN) K-近邻算法采用测量不同的特征值之间的距离方法进行分类。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。 优点:精度高、对异常数据不敏感、无数据输入假定。 缺点:计算复杂度高、空间复杂度高。 适用数据范围:数值型和标称型。 KNN工作原理是:存在一个样本数据集合(训练样本集),并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。
本文介绍如何使用Python pandas库实现Excel中的SUMIF函数和COUNTIF函数功能。
NumPy是Python中用于数据分析、机器学习、科学计算的重要软件包。它极大地简化了向量和矩阵的操作及处理。python的不少数据处理软件包依赖于NumPy作为其基础架构的核心部分(例如scikit-learn、SciPy、pandas和tensorflow)。除了数据切片和数据切块的功能之外,掌握numpy也使得开发者在使用各数据处理库调试和处理复杂用例时更具优势。
NumPy是Python中用于数据分析、机器学习、科学计算的重要软件包。它极大地简化了向量和矩阵的操作及处理。python的不少数据处理软件包依赖于NumPy作为其基础架构的核心部分(例如scikit-learn、SciPy、pandas和tensorflow)。除了数据切片和数据切块的功能之外,掌握numpy也使得开发者在使用各数据处理库调试 和 处理 复杂用例时更具优势。
NumPy是Python中用于数据分析、机器学习、科学计算的重要软件包。它极大地简化了向量和矩阵的操作及处理。python的不少数据处理软件包依赖于NumPy作为其基础架构的核心部分(例如scikit-learn、SciPy、pandas和tensorflow)。
在本文中,将介绍NumPy的主要用法,以及它如何呈现不同类型的数据(表格,图像,文本等),这些经Numpy处理后的数据将成为机器学习模型的输入。
k近邻法(k-nearest neighbor, k-NN)是1967年由Cover T和Hart P提出的一种基本分类与回归方法。它的工作原理是:存在一个样本数据集合,也称作为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。输入没有标签的新数据后,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。
本文简单介绍NumPy模块的两个基本对象ndarray、ufunc,介绍ndarray对象的几种生成方法及如何存取其元素、如何操作矩阵或多维数组、如何进行数据合并与展平等。最后说明通用函数及广播机制。
领取专属 10元无门槛券
手把手带您无忧上云