抽样调查在统计学与 Python数据分析/数据挖掘/数据科学 中非常常用,在实际业务中更是高频刚需,而 Python 并没有专有的抽样方法库,所以笔者将自己以前的笔记汇总到自写库中,用到时直接调用函数即可,快速且精确。
Python中如何实现分层抽样 在我们日常的数据分析工作中,常用到随机抽样这一数据获取的方法。 如果我们想在一个大的数据总体中,按照数据的不同分类进行分层抽样,在Python中如何用代码来实现这一操作呢。 下面我们要进行分层抽样的应用背景: 随机抽取2017年重庆市不同区域高中学生的高考成绩。 这里数据总体为2017年重庆市所有区域高中的学生高考成绩。 分层抽样按照区域分类。 设沙坪坝区为1,渝北区为2,南岸区为3(作为方法展示,只列出三个区,实际分析中按照抽样方法添加参数即可 代码实现: #分层抽样 gb
从宏观上,两者的目的都是为了提供更好的样本代表性,并且两者的理论基础都来自于:总体的个体的同质性越高,抽样误差越小,样本的代表性越好。
抽样是数据处理的一种基本方法,常常伴随着计算资源不足、获取全部数据困难、时效性要求等情况使用。
https://www.cnblogs.com/itboys/p/9801489.html
在统计研究中,针对容量无限或者容量很大以至于无法直接对其进行研究的总体,都是通过从中抽取一部分个体作为研究对象,以考察总体的特征。被抽取的部分个体称为该总体的一个样本。从总体中抽取样本的过程,称为抽样。
在电商网站 AB 测试非常常见,是将统计学与程序代码结合的经典案例之一。尽管如此,里面还是有许多值得学习和注意的地方。
导读: 直观来看,处理大数据的一个方法就是减少要处理的数据量,从而使处理的数据量能够达到当前的处理能力能够处理的程度。可以使用的方法主要包括抽样和过滤。两者的区别是,抽样主要依赖随机化技术,从数据中随机选出一部分样本,而过滤依据限制条件仅选择符合要求的数据参与下一步骤的计算。
之前在R里面可以通过调用Rose这个package调用数据平衡函数,这边用python改写了一下,也算是自我学习了。
一、简介 在现实的机器学习任务中,我们往往是利用搜集到的尽可能多的样本集来输入算法进行训练,以尽可能高的精度为目标,但这里便出现一个问题,一是很多情况下我们不能说搜集到的样本集就能代表真实的全体,其分布也不一定就与真实的全体相同,但是有一点很明确,样本集数量越大则其接近真实全体的可能性也就越大;二是很多算法容易发生过拟合(overfitting),即其过度学习到训练集中一些比较特别的情况,使得其误认为训练集之外的其他集合也适用于这些规则,这使得我们训练好的算法在输入训练数据进行验证时结果非常好,但在训练
本文介绍了抽样方法在数据科学领域的应用,包括简单随机抽样、分层抽样、整群抽样、多级抽样和特殊采样方法。这些抽样方法旨在从庞大的数据集中抽取有代表性的样本,以便进行数据分析和建模。每种抽样方法都有各自的优缺点和适用场景,需要根据数据的特点和问题需求来选择合适的抽样方法。同时,针对类不平衡问题,还可以采用过采样和欠采样方法进行处理,以增加少数类的样本数量,提高模型的性能。
本文通过介绍一种信用风险评级模型的开发过程,包括数据准备、特征选择、模型训练和模型验证等步骤。在数据准备阶段,需要清洗和处理原始数据,使其适用于模型训练。在特征选择阶段,需要确定哪些特征对信用风险的影响最大,并将其纳入模型。在模型训练阶段,需要选择合适的模型和参数,并进行训练。在模型验证阶段,需要使用测试集对模型进行验证,并计算模型的区分能力。最后,通过五折交叉验证的方法,选出稳定性和区分能力最优的模型,作为最终的信用风险评级模型。
将数据拆分为训练数据和验证数据,可以减小过拟合的可能性。但这样就必须拆分出和训练集数据分布几乎一致的验证数据。
昨天写了一段用来做分层随机抽样的代码,很粗糙,不过用公司的2万名导购名单试了一下,结果感人,我觉得此刻的我已经要上天了,哈哈哈哈哈哈
导读:抽样是从整体样本中通过一定的方法选择一部分样本。抽样是数据处理的基本步骤之一,也是科学实验、质量检验、社会调查普遍采用的一种经济有效的工作和研究方法。
Apache Spark中的理念之一就是提供丰富友好的内置库,以便用户可以轻松组织数据管道。随着 Spark,尤其是 MLlib 在数据科学家和机器学习从业者中迅速风靡,我们窥见了模型拟合之外对数据分析支持的需求。为了满足这种需求,我们开始添加通用统计函数的可扩展实现来升级数据管道的各个组件。现在我们很高兴地宣布Apache Spark 1.1 内置了对探索性数据管道中常见的几种统计算法的支持:
抽样调查的领域涉及如何用有效的方式得到样本。这些调查都利用了问卷,而问卷的设计则很有学问。它设计如何用词、问题的次序和问题的选择与组合等等。涉及包括心理学、社会学等知识。问题的语言应该和被调查者的文化水平相适应。那么抽样调查的设计的目的之一是确保样本对总体的代表性,以保证后续推断的可靠性。然而每个个体可能的简单随机抽样是一个理想情况。
之前写了一篇以基于elastic的需求预估的文章,只不过用的是R语言开发的,最近在学python,就仿照逻辑写了一篇python的,主要修改点如下:
抽样是研究和数据收集中不可或缺的方法,能够从更大数据中获得有意义的见解并做出明智的决定的子集。不同的研究领域采用了不同的抽样技术,每种技术都有其独特的优点和局限性。本文将深入探讨了最常见的抽样技术,包括随机抽样、分层抽样、系统抽样、聚类抽样和便利抽样,并重点介绍了它们的应用和注意事项。
本文我们使用加州住房价格数据集,从零开始,一步一步建立模型,预测每个区域的房价中位数。目的是完整实现一个机器学习的流程。
(本文框架) 01 输为什么要用抽样样本 我们经常需要调查某一批对象的某一项情况,如果所调查对象的体量比较少时,我们可以采取去量调查统计的形式,但是如果被调查统计对象体量较大时,很显然全量统计就有点不
本文是数据科学家学习路径的的完结篇,算上《数据科学家成长指南(上)》和《数据科学家成长指南 (中)》,总篇幅应该五万字多一点。今天更新数据获取、数据清洗、工具三条线路的内容,文字较少。
前沿 当你想了解机器学习,最好的方式就是用真实的数据入手做实验。网络上有很多优秀的开源资料,包括数据集,这里我们选择了加利福尼亚的房价数据集(数据的获得后面会给出),它的统计图如下所示,横纵坐标分别代
最近在社会上刮起一阵大数据的不正之风,本科生也敢拿着几个G的硬盘声称这些数据能解决某某疑难问题,让人联想起存满硬盘黄片的处男说这家伙老爽了。 虽然在社会科学领域流行程度远不及计算机和工程,谷歌学术我用关键字搜索一下,大数据和社会科学为内容的文章2011年是194个,2012年 635,2013年1820,这两年算是以1.2左右的指数增长了吧。一个话题一年一两千篇文章并不算多,相比之下”social stratification”2014年还没过完就已经16800多篇了,但是大数据这个话题在网上传的很神,
一种面向高维数据的集成聚类算法 聚类集成已经成为机器学习的研究热点,它对原始数据集的多个聚类结果进行学习和集成,得到一个能较好地反映数据集内在结构的数据划分。很多学者的研究证明聚类集成能有效地提高聚类结果的准确性、鲁棒性和稳定性。本文提出了一种面向高维数据的聚类集成算法。该方法针对高维数据的特点,先用分层抽样的方法结合信息增益对每个特征簇选择合适数量比较重要的特征的生成新的具代表意义的数据子集,然后用基于链接的方法对数据子集上生成的聚类结果进行集成.最后在文本、图像、基因数据集上进行实验,结果表明,与集成
参数和统计量在数据分析中起着至关重要的作用。参数是对总体特征的描述,如均值、方差等,而统计量则是基于样本数据计算得出的,用于估计或推断总体参数的值。
在人工智能(Artificial Intelligence,简称AI)领域中,数据预处理是非常重要的一环。它是在将数据输入到模型之前对数据进行处理和清洗的过程。数据预处理可以提高模型的准确性、可靠性和可解释性。
该抽样方法是按等概率原则直接从总中抽取n个样本,这种随机样本方法简单,易于操作;但是它并不能保证样本能完美的代表总体,这种抽样的基本前提是所有样本个体都是等概率分布,但真实情况却是很多数样本都不是或无法判断是否等概率分布。在简单随机抽样中,得到的结果是不重复的样本集,还可以使用有放回的简单随机抽样,这样得到的样本集中会存在重复数据。该方法适用于个体分布均匀的场景。
SAS抽样代码模板 黄色部分为套用部分,红色部分为可选部分 ——————————模板—————————— proc surveyselect data=总体数据 out=样本数据 method=抽样方法 n=抽取样本; strata 分层变量; run; ———————————————————— method指定抽样方法: l srs:简单无重复随机抽样,可以用n=指定需要抽取的样本数,也可以用samprate=指定要抽取的样本占总体的比例。 l sys:系统抽样,需要指定样本(用语句sampsiz
为什么我们需要方差减少? 当我们进行在线实验或A/B测试时,我们需要确保我们的测试具有很高的统计能力,这样如果我们的推断确实存在的话,我们就有很高的概率发现和验证它。影响统计能力的因素有哪些?样本大小
以上这篇python使用pandas抽样训练数据中某个类别实例就是小编分享给大家的全部内容了,希望能给大家一个参考。
导读:无论你的工作内容是什么,掌握一定的数据分析能力,都可以帮你更好的认识世界,更好的提升工作效率。数据分析除了包含传统意义上的统计分析之外,也包含寻找有效特征、进行机器学习建模的过程,以及探索数据价值、找寻数据本根的过程。
当你想了解机器学习,最好的方式就是用真实的数据入手做实验。网络上有很多优秀的开源资料。这里我们选择了加利福尼亚的房价数据集(数据的获得后面会给出),它的统计图如下所示,横纵坐标分别代表经纬度,图上有很多圈圈,而圈圈的大小代表着人口数,颜色图则表示房均价,那么一堆数据到手了,但是我们到底要做什么呢?
本篇介绍了vivo霍金实验平台的系统架构以及业务发展过程中遇到的问题以及对应的解决方案。
随着网络新闻服务的飞速发展,网络上产生了大量的新闻文本信息,探索新闻文本背后的情绪表达,可以为政府和企业提供潜在价值。本题给定互联网新闻文本标题及新闻文本内容,要求判断新闻的情感极性(包括正面极性,中性极性和负面极性),是自然语言处理领域的典型分类任务。针对该任务,本文采用了RoBERTa模型,并改造了多个上层模型并通过投票融合的方式取得了较好的结果。在CCF BDCI的新闻情感分析的评测任务上,该方法在最终的B榜评测数据上,F1分值达到了0.81697最高分。
导读:要做好数据分析,除了自身技术硬以及数据思维灵活外,还得学会必备的统计学基础知识!因此,统计学是数据分析必须掌握的基础知识,即通过搜索、整理、分析、描述数据等手段,以达到推断所测对象的本质,甚至预测对象未来的一门综合性科学。统计学用到了大量的数学及其它学科的专业知识,其应用范围几乎覆盖了社会科学和自然科学的各个领域,而在数据量极大的互联网领域也不例外,因此扎实的统计学基础是一个优秀的数据人必备的技能。
这里一而再再而三的提到样本,因为样本是我们一眼可得的宏观世界的缩影,是探取自然,人类社会能量的探针,更是我们一叶之秋的信息索引。
数据分析遵循一定的流程,不仅可以保证数据分析每一个阶段的工作内容有章可循,而且还可以让分析最终的结果更加准确,更加有说服力。一般情况下,数据分析分为以下几个步骤:
练习地址:https://www.kaggle.com/c/ds100fa19 相关博文: [Kaggle] Spam/Ham Email Classification 垃圾邮件分类(RNN/GRU/LSTM) [Kaggle] Spam/Ham Email Classification 垃圾邮件分类(BERT)
【新智元导读】彭博社最近推出了一些列大公司面试指南,其中包括Facebook、Uber和高盛等大公司。那么,如果想进入Facebook做一名机器学习工程师,需要具备哪些素质?要多牛才能与Yann LeCun做同事呢? 职位:软件工程师,机器学习 招聘负责人:James Everingham,Instagram工程主管 薪资:$130,000-$145,000 职位描述: 构建更智能的系统;检测数据,增强用户体验,编写和实现代码,评估结果。该职位不仅是写代码,而且要做研究。例如,尝试提供更好的个性化搜索结果
算法是数据科学的核心,而采样是决定项目成败的关键技术。了解有关使用的最常见采样技术的更多信息,因此您可以在处理数据时选择最佳方法。
本文将基于不平衡数据,使用Python进行反欺诈模型数据分析实战,模拟分类预测模型中因变量分类出现不平衡时该如何解决,具体的案例应用场景除反欺诈外,还有客户违约和疾病检测等。只要是因变量中各分类占比悬殊,就可对其使用一定的采样方法,以达到除模型调优外的精度提升。主要将分为两个部分:
根据CEIC数据显示,第六次人口普查中,中国三线及以下城市的消费者占全国的七成以上,GDP占全国的59%,同时三线及以下城市也贡献着中国三分之二的经济增长。随着移动互联网流量红利的消失,用户下沉是互联网行业的必然选择。三线及以下用户已成为一股不可小觑的力量,促使了拼多多式黑马产品的诞生。
问:「数据会说谎」的真实例子有哪些? 究竟是数据在说谎,还是逻辑在说谎?最好是你遇到的真实案例,你是如何判断数据表明的错误的? Han Hsiao答:[1600赞](学术向) 一、数据来源如何说谎
假设我们需要设计一个抽样调查,有一个完整的框架,包含目标人群的信息(识别信息和辅助信息)。如果我们的样本设计是分层的,我们需要选择如何在总体中形成分层,以便从现有的辅助信息中获得最大的优势。
本文来源:企鹅智库(ID:BizNext) 2019年3月15日,315晚会曝光了包括“医疗垃圾产业链”、“家电售后欺诈”、“智能骚扰电话”、“电子烟”等诸多消费欺诈或信息误区。引发广泛关注。 对于这些曝光的问题和风险,你或许想进一步了解: 这届315曝光的问题,有多少网民遭遇了? 中国网民过去一年被骗损失的金额有多少? 中国网民消费维权的方式有哪些? 消费者最关切的欺诈重灾区在哪里? …… 在晚会进行同时,企鹅智库发布 “网上315:中国网民消费维权大调查”,面向全国网民征集消费欺诈与维权的经历。
数据挖掘是从大量数据(包括文本)中挖掘出隐含的、先前未知的、对决策有潜在价值的关系、模式和趋势,并用这些知识和规则建立用于决策支持的模型,提供预测性决策支持的方法、工具和过程。
英文原文:hadoop-stratified-randosampling-algorithm 译者:bruce-accumulate 引言:众所周知,想要面试一个统计学家和软件工程师的合体——数据工程师——是件很难的事情。我在面试中常使用的方法是:提出即需要算法设计,又需要一些概率论知识的问题,来考察面试者的功底。下面就是在硅谷非常流行的例子: “给出一个数据流,这个数据流的长度很大或者未知。并且对该数据流中数据只能访问一次。请写出一个随机选择算法,使得数据流中所有数据被选
数据分析与挖掘,指的是通过对大量的数据进行观察与分析。发掘其中的未知的,潜在的、对决策有价值的关系、模式和趋势,并利用这些规则建立决策模型、提供预测性支持的方法和过程。 作为一名大数据开发工程师,什么能力才是我们我们的核心竞争力,答案是肯定的,那就是数据分析与挖掘。只有让数据产生价值才是数据开发工程师的职责。下面我将从几个方面介绍数据挖掘: 1 数据挖掘的基本任务 数据挖据的基本任务包括利用分类与预测、聚类分析、关联规则、时序模式、偏差检验、智能推荐等方法,帮助企业提取数据中蕴含的商业价值,提高企业的竞争
领取专属 10元无门槛券
手把手带您无忧上云