机器之心报道 机器之心编辑部 花了七年时间填坑,《机器学习数学》的书稿终于和读者们见面了。 说到《Python 机器学习》,AI 领域的研究者都不会感到陌生。这本书可以说是近十年来最畅销的机器学习书籍之一,也是其作者 Sebastian Raschka 最具代表性的作品。 Sebastian Raschka 《Python 机器学习》在 2015 年出版,一举成为 Packt 和亚马逊网站上的畅销书,在 2016 年获得 ACM 最佳计算奖,并被翻译成多种语言出版。书籍的第二版和第三版也分别于 2017
在数学中,反函数是指给定一个函数,可以通过求解方程来找到另一个函数,使得两个函数的复合等于恒等函数。Python作为一种强大的编程语言,可以使用不同的方法来求解反函数。本文将介绍什么是反函数以及如何使用Python求解反函数。
说到《Python 机器学习》,AI 领域的研究者都不会感到陌生。这本书可以说是近十年来最畅销的机器学习书籍之一,也是其作者 Sebastian Raschka 最具代表性的作品。
个人主页--> https://xiaosongshine.github.io/
前几天在Python星耀交流群有个叫【BuLLBuL】的粉丝问了一个关于Python实现代数函数的问题,这里拿出来给大家分享下,一起学习。
人工智能的基础是数学,线性代数又是其中的重要部分。然而,对于数学基础不好的人来说,「线性代数」是一门非常抽象的课程。如何学习线性代数呢?这个 GitHub 项目介绍了一份入门级线性代数课程讲义,适合大学生、程序员、数据分析师、算法交易员等,使用的代码用 Python 语言写成。
线性代数与数据科学的关系就像罗宾与蝙蝠侠。这位数据科学忠实的伙伴经常会被大家所忽视,但实际上,它是数据科学主要领域--包括计算机视觉(CV)与自然语言处理(NLP)等热门领域的强力支撑。
本篇主要介绍了机器学习与数据科学背后的数学技术十大应用之基础机器学习部分与降维部分。
深度学习:作为机器学习的一个子域,关注用于模仿大脑功能和结构的算法:人工神经网络。
链接:http://www.cis.upenn.edu/~jean/math-basics.pdf
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 源 | DL4J 文末获取电子版下载方式 本篇文章写给走在深度学习大门前徘徊以及正在深度学习的康庄大道上前行的小伙伴,希望可以助你一臂之力。 写在前面的,之前推送过的资源 | 26份机器学习视频资源,涵盖入门->中级->项目的各个阶段!(可直接下载......)里面分享给大家一些列的学习视频,包含的东西多且杂,没有形成学习的先后顺序。本篇文章是基本按照学习的先后顺序进行写的。其次,每个
本篇文章是基本按照学习的先后顺序进行写的。具体的入门方式取决于你已经掌握的知识。要理解并应用深度学习,必须先掌握线性代数、微积分和统计学,还应当具备编程及机器学习的知识。
线性代数是一门大学课程,但也是相当“惨烈”的一门课程。在大学期间,我对这门学科就没怎么学懂。先是挣扎于各种行列式、解方程,然后又看到奇怪的正交矩阵、酉矩阵。还没来得及消化,期末考试轰然到来,成绩自然凄凄惨惨。 后来读了更多的线性代数的内容,才发现,线性代数远不是一套奇奇怪怪的规定。它的内在逻辑很明确。只可惜大学时的教材,把最重要的一些核心概念,比如线性系统,放在了最后。总结这些惨痛的经历,再加上最近的心得,我准备写一些线性代数的相关文章。 这一系列线性代数文章有三个目的: 概念直观化 为“数据科学”系列文章
考虑到自然语言在许多科学和工程领域表达的数学问题的丰富性,使用大语言模型(LLM)来解决数学问题是一项有趣的研究工作。今天给大家介绍一篇微软研究院联合欧美高校关于如何使用GPT-4解决数学问题的研究论文。
NumPy 是一个 Python 包。 它代表 “Numeric Python”。 它是一个由多维数组对象和用于处理数组的例程集合组成的库。 Numeric,即 NumPy 的前身,是由 Jim Hugunin 开发的。 也开发了另一个包 Numarray ,它拥有一些额外的功能。 2005年,Travis Oliphant 通过将 Numarray 的功能集成到 Numeric 包中来创建 NumPy 包。 这个开源项目有很多贡献者。 Numpy是一个开源的Python科学计算库,它是python科学计
说起数学计算器,我们常见的是加减乘除四则运算,有了它,我们就可以摆脱笔算和心算的痛苦。四位数以上的加减乘除在数学的原理上其实并不难,但是如果不借助于计算器,光依赖我们的运算能力(笔算和心算),不仅运算的准确度大打折扣,而且还会让我们对数学的运用停留在一个非常浅的层次。
可汗学院,是由孟加拉裔美国人萨尔曼·可汗创立的一家教育性非营利组织,主旨在于利用网络影片进行免费授课。
线性代数简称线代,不过,却是个不怎么现代、相反历史非常悠久的数学分支。至少出现了一千五百年,至今仍在肆虐小学奥数班的鸡兔同笼问题,就是一款典型的线代问题。
NumPy 是一个 Python 包。 它代表 “Numeric Python”。 它是一个由多维数组对象和用于处理数组的例程集合组成的库。
导读:学 Excel 还是 R、Python?机器学习怎么入门?数据工程师和数据科学家有什么区别?听听美国 IT 大牛的建议。
作者:Vamei 出处:http://www.cnblogs.com/vamei 严禁任何形式转载。
来源:专知本文为书籍介绍,建议阅读5分钟这本书深入探讨了几个关键的线性代数主题。 这本书深入探讨了几个关键的线性代数主题,因为它们适用于数据分析和数据挖掘。本书提供了一种案例研究方法,其中每个案例都将基于现实世界的应用程序。 这篇文章是用于第二门课程的应用线性代数的数据分析,与一个补充章的决策树及其在回归分析中的应用。文本可以被认为是两个不同但重叠的通用数据分析类别:聚类和插值。 与数据分析相关的数学技术知识,以及在数据分析背景下对结果的解释,对学习本科数学的学生来说特别有价值。这篇文章的每一章都带读者通
进入大学,我们接触了线性代数,利用线性代数解方程组比高中慢慢计算会好了许多,快捷许多,我们作为编程人员,有没有用python解决解方程组的办法呢?
来源:专知本文为书籍介绍,建议阅读5分钟有了这本书的知识,您将能够理解、实现和适应无数的现代分析方法和算法。 如果你想在任何计算或技术领域工作,你需要理解线性代数。作为对矩阵及其运算的研究,线性代数几乎是所有在计算机中实现的算法和分析的数学基础。但是它在几十年前的教科书中呈现的方式与今天专业人士使用线性代数解决现实世界的现代应用的方式有很大的不同。 Mike X Cohen的这本实用指南教授了用Python实现的线性代数的核心概念,包括如何在数据科学、机器学习、深度学习、计算模拟和生物医学数据处理应用中使
最近写CFD的东西,发现主机造轮子太累,还是用matlab吧,有点忘记了,复习一下啦~
机器学习根植于统计学,正在逐渐成为最有趣、发展最快的计算机科学领域之一。机器学习可应用到无数行业和应用中,使其更加高效和智能。
NumPy 是一个 Python 包。 它代表 “Numeric Python”。 它是一个由多维数组对象和用于处理数组的例程集合组成的库。 Numeric,即 NumPy 的前身,是由 Jim Hugunin 开发的。 也开发了另一个包 Numarray ,它拥有一些额外的功能。 2005年,Travis Oliphant 通过将 Numarray 的功能集成到 Numeric 包中来创建 NumPy 包。 这个开源项目有很多贡献者。 Numpy是一个开源的Python科学计算库,它是python科学计算
SciPy(Scientific Python)是一个开源的Python科学计算库,用于解决科学与工程领域的各种数值计算问题。它建立在NumPy库的基础之上,并额外提供其他更高级的功能与工具,涵盖了许多科学分析领域——包括数值积分、优化、插值、信号和图像处理、线性代数、统计分析等。其中,SciPy常用的一些功能如下所示。
自然语言处理是什么?谁需要学习自然语言处理?自然语言处理在哪些地方应用?相关问题一直困扰着不少初学者。针对这一情况,作者结合教学经验和工程应用编写此书。《自然语言处理理论与实战》讲述自然语言处理相关学科知识和理论基础,并介绍使用这些知识的应用和工具,以及如何在实际环境中使用它们。由于自然语言处理的特殊性,其是一门多学科交叉的学科,初学者难以把握知识的广度和宽度,对侧重点不能全面掌握。《自然语言处理理论与实战》针对以上情况,经过科学调研分析,选择以理论结合实例的方式将内容呈现出来。其中涉及开发工具、Python语言、线性代数、概率论、统计学、语言学等工程上常用的知识介绍,然后介绍自然语言处理的核心理论和案例解析,最后通过几个综合性的例子完成自然语言处理的学习和深入。《自然语言处理理论与实战》旨在帮助读者快速、高效地学习自然语言处理和人工智能技术。
这个库的核心是 ndarray 数据结构(Python 的标准库没有数组数据结构),它允许程序员实际做数学和科学的事情。它还对线性代数有一些(但不多)支持。
链接:oschina.net/news/78629/beginners-how-to-learn-from-zero-artificial-intelligence 此文是想要进入人工智能这个领域、但
在我们做机器学习模型的研究或者是学习的时候,在完成了训练之后,有时候会希望能够将相应的参数保存下来。否则的话,如果是在Notebook当中,当Notebook关闭的时候,这些值就丢失了。一般的解决方案是将我们需要的值或者是数组“持久化”,通常的做法是存储在磁盘上。
最近几个月,有很多同学都私信我,问我NLP到底应该怎么学,这两天我就根据自己的经验,做了一个简单的总结,导图在手机上看着可能比较小,大家可以在电脑上看,或者保存到手机再放大。如果第一次刷进来没有图,后退重进就好了,可能是因为图太大了。
NumPy 提供了丰富的线性代数操作功能,包括矩阵乘法、行列式计算、特征值和特征向量等。这些功能使得 NumPy 成为科学计算和数据分析领域的重要工具。在本篇博客中,我们将深入介绍 NumPy 中的线性代数操作,并通过实例演示如何应用这些功能。
hello,大家好,我是一点,专注于Python编程,如果你也对感Python感兴趣,欢迎关注交流。
机器学习 以下是一些实用的流程图和机器学习算法表。 神经网络架构 来源: http : //www.asimovinstitute.org/neural-network-zoo/ The Neura
编者按:2012年10月《哈佛商业周刊》上面发表了一篇专栏,文章称“数据科学家”是21世纪最最性感的工作。在美国,数据科学家的年收入已超过律师和医生,无怪乎有人惊呼“告诉你的孩子不要成为医生而要成为数
大家好,又见面了,我是你们的朋友全栈君。 大数据学习路线 java(Java se,javaweb) Linux(shell,高并发架构,lucene,solr) Hadoop(Hadoop,HDFS,Mapreduce,yarn,hive,hbase,sqoop,zookeeper,flume) 机器学习(R,mahout) Storm(Storm,kafka,redis) Spark(scala,spark,spark core,spark sql,spark streaming,spark
NumPy 是Python数据分析必不可少的第三方库,NumPy 的出现一定程度上解决了Python运算性能不佳的问题,同时提供了更加精确的数据类型。如今,NumPy 被Python其它科学计算包作为基础包,已成为 Python 数据分析的基础,可以说 NumPy 就是SciPy、Pandas等数据处理或科学计算库最基本的函数功能库。
原文:https://en.wikipedia.org/wiki/List_of_numerical-analysis_software
Julia 是一种多范式的函数式编程语言,用于机器学习和统计编程。尽管 Python 通常被认为是一种面向对象的编程语言,其实它也是用于机器学习的多范式编程语言。需要注意的是,Julia 语言更多地基于函数范式。此外,Julia 语言虽不如 Python 那么流行,但在数据科学中使用 Julia 具有很大的优势,从而使它在很多情况下成为更好的编程语言选择。
本文介绍了如何使用Caffe进行深度学习,通过实例演示了如何从图片数据集训练生成模型,并使用生成的模型进行预测。主要内容包括:安装Caffe,编写训练代码,生成模型,以及使用生成的模型进行预测。
有不少同学学习 Python 的原因是对人工智能感兴趣,有志于从事相关行业。今天我们来聊聊这个方向所需要的一些技能。
此列表包含了人工智能和深度学习最好的入门资源,对初学者和想要进入这一领域但又不知道如何开始的人最为有用。 机器学习 机器学习领域的最佳入门介绍,可以在coursera 上观看吴恩达(Andrew Ng)的机器学习课程。这门课程解释了最基本的概念,让你对最重要的算法有一个很好的理解。 简而言之,如果想对高水平的机器学习算法有一个概览,可以观看在线课程“Machine Learning Distilled”。 图书Programming Collective Intellience《集体智慧编程》是学习在Pyt
机器学习作为人工智能领域的一个重要主题,已经被大家关注相当一段时间了。机器学习提供了有吸引力的机会,进入这一领域工作并不像想像中那么困难。即使你在数学或编程方面没有任何基础,这也不是什么问题。取得成功的最重要的因素是由足够的兴趣和动力去学习。
线性代数对于理解机器学习和深度学习内部原理至关重要,线性代数是有关连续值的数学。许多计算机科学家在此方面经验不足,传统上计算机科学更偏重离散数学。这篇博文主要介绍了线性代数的基本概念,包括标量、向量、矩阵、张量,以及常见的矩阵运算,并且也有相应的Python代码实现。
这份指南是为了那些对机器学习感兴趣,但不知如何开始的朋友们准备的。我想大多厌倦在网上搜索大量资料的人都会有挫败感,也放弃了有人能指引他们如何入门的希望。
机器学习和数据分析变得越来越重要,但在学习和实践过程中,常常因为不知道怎么用程序实现各种数学公式而感到苦恼,今天我们从数学公式的角度上了解下,用 python 实现的方式方法。
机器学习(Machine Learning)有很多方面,当我开始研究学习它时,我发现了各种各样的“小抄”,它们简明地列出了给定主题的关键知识点。最终,我汇集了超过 20 篇的机器学习相关的小抄,其中一些我经常会翻阅,而另一些我也获益匪浅。这篇文章里面包含了我在网上找到的 27 个小抄,如果你发现我有所遗漏的话,请告诉我。 机器学习领域的变化是日新月异的,我想这些可能很快就会过时,但是至少在目前,它们还是很潮的。 机器学习 这里有一些有用的流程图和机器学习算法表,我只包括了我所发现的最全面的几个。 神经网络架
领取专属 10元无门槛券
手把手带您无忧上云