Tensorflow 2.0发布已经有一段时间了,各种基于新API的教程看上去的确简单易用,一个简单的mnist手写识别只需要下面不到20行代码就OK了,
如果你在使用TensorFlow时遇到了"AttributeError: module 'tensorflow' has no attribute 'placeholder'"的错误,这意味着你正在使用的TensorFlow版本与你的代码不兼容。这个错误通常是因为在TensorFlow 2.0及更高版本中,'placeholder'被移除了。 为了解决这个问题,有几种方法可以尝试:
该文章讲述了TensorFlow中GraphDef和SavedModel两个主要文件格式的导出、使用和保存的过程。其中,GraphDef文件格式用于在TensorFlow中导出的图,SavedModel文件格式用于在TensorFlow中保存的模型。通过这些文件格式,可以方便地将TensorFlow模型从一个环境迁移到另一个环境,或在TensorFlow集群中部署。
「声明:此实践来自于 R2RT大神博客中的 RNN in Tensorflow 的两篇教程之一,版权归 R2RT 所有,不妥删。这里渣翻译主要是为了自己理解学习,且后面训练的结果有些不太一样,有些内容也没详细翻译。感谢 R2RT 以及评论中的一些大神对于概率算法的的解释。」
Tensorflow 并不是一个专门用于机器学习的库,相反的,它是一个通用的用于图计算的库。它的核心部分是用 C++ 实现的,同时还有其它语言的接口库。Go 语言版本的接口库与 Python 版本的并不一样,它不仅有助于我们使用 Go 语言调用 Tensorflow,同时有助于我们了解 Tensorflow 的底层实现。
该文对TensorFlow中的图像像素操作进行了介绍,包括读取和保存像素值,以及将像素值转换为其他类型。同时,文章还解释了如何使用这些操作来执行图像转换和增强操作,并提供了示例代码。
raise AttributeError(r"'Dict' has no attribute %s." % key)
【译者注】本文通过一个简单的Go绑定实例,让读者一步一步地学习到Tensorflow有关ID、作用域、类型等方面的知识。以下是译文。 Tensorflow并不是机器学习方面专用的库,而是一个使用图来表示计算的通用计算库。它的核心是用C++实现的,并且还有不同语言的绑定。Go语言绑定是一个非常有用的工具,它与Python绑定不同,用户不仅可以通过Go语言使用Tensorflow,还可以了解Tensorflow的底层实现。 绑定 Tensorflow的开发者正式发布了: C++源代码:真正的Tensorflow
类元编程是在运行时创建或自定义类的艺术。在 Python 中,类是一等对象,因此可以使用函数在任何时候创建一个新类,而无需使用 class 关键字。类装饰器也是函数,但设计用于检查、更改甚至替换装饰的类为另一个类。最后,元类是类元编程的最高级工具:它们让你创建具有特殊特性的全新类别的类,例如我们已经看到的抽象基类。
错误处理 错误处理机制:try...except...finally... try: print('try...') r = 10/5 print('result:', int(r)) except ZeroDivisionError as e: print('except:', e) finally: print('finally...') print('END') 由于没有错误发生,所以except语句块不会被执行,但是finally如果有,则一定会被执行(可以没
视觉(vision)、自然语言处理(Nature Language Processing, NLP)、语音(Speech)是深度学习研究的三大方向。三大领域各自都诞生了若干经典的模块,用来建模该领域数据所蕴含的不同特性的模式。上一篇文章介绍了 PaddleFluid 和 TensorFlow 的设计和核心概念,这一篇我们从图像任务开始,使用 PaddleFluid 和 TensorFlow 来写一个完全相同的网络,通过这种方式了解我们的使用经验如何在不同平台之间迁移,从而帮助我们选择便利的工具,集中于机器学习任务本身。
2.一个函数有了input_signature之后,在tensorflow里边才可以保存成savedmodel。在保存成savedmodel的过程中,需要使用get_concrete_function函数把一个tf.function标注的普通的python函数变成带有图定义的函数。
在使用TensorFlow进行深度学习任务时,有时会遇到类似于"AttributeError: module 'tensorflow' has no attribute 'reset_default_graph'"的错误信息。这个错误通常是由于代码中尝试调用已经被删除的TensorFlow方法或属性而导致的。本文将介绍如何解决这个错误。
面向对象编程的三大特征:封装,集成,多态 封装:将数据和方法放在一个类中 继承:python中的一个类可以继承于一个或多个类,被继承的叫父类(基类,base class),继承的类叫子类 多态:一类事物拥有多种形态,一个抽象类有多个子类,(多态的概念依赖于继承),不同的子类对象调用相同的方法,产生不同的执行结果,多态可以增加代码的灵活性 多态 # -*- coding:utf-8 -*- """ @Describe: 0816 @Author: zhongxin @Time: 2019-08-16 20:3
#encoding:utf8 # 设定编码-支持中文 1 基础 安装python2.7 wget https://www.python.org/ftp/python/2.7.9/Python-2.7.9.tgz tar xvf Python-2.7.9.tgz cd Python-2.7.9 ./configure --prefix=/usr/local/python27 make make ins
关于TensorFlow 2.0 preview,在谷歌开源战略师 Edd Wilder-James 曾将公开的一封邮件就有介绍,TensorFlow 2.0 预览版将在今年正式发布,并称其是一个重大的里程碑。将会把重点放在易用性上,而 Eager Execution 将会是 TensorFlow 2.0 的核心功能。
Python 3.7 正式发布!这个新的Python版本自2016年9月开始开发,现在我们所有人都可以享受核心开发人员辛勤工作的成果。
该方法对某些系统模块进行全局打补丁,使其对Greenthread友好。关键字参数用于指定哪些模块需要打补丁,如果未提供关键字参数,则会对所有默认的模块(如代码所示)打补丁,例如: monkey_patch(socket = True,select = True) 仅对socket和select模块打补丁。大多数参数都是对同名的单个模块进行打补丁,比如操作系统,时间,选择。但是socket例外,它也会对ssl模块(如果存在)打补丁,thread用于对threading、thread、Queue打补丁。说明:多次调用monkey_patch是安全的。
MNIST是一个非常有名的手写体数字识别数据集,在很多资料中,这个数据集都会作为深度学习的入门样例。下面大致介绍这个数据集的基本情况,并介绍temsorflow对MNIST数据集做的封装。tensorflow的封装让使用MNIST数据集变得更加方便。MNIST数据集是NIST数据集的一个子集,它包含了60000张图片作为训练数据,10000张图片作为测试数据。在MNIST数据集中的每一张图片都代表了0~9中的一个数字。图片的大小都为28*28,且数字都会出现在图片的正中间。
原因是因为label_file是Tensor,而不是string,但是np.load需要string类型的参数,如何解决呢?
将PyTorch模型转换为PaddlePaddle模型需要先把PyTorch转换为onnx模型,然后转换为PaddlePaddle模型。
load_model代码包含load_weights的代码,区别在于load_weights时需要先有网络、并且load_weights需要将权重数据写入到对应网络层的tensor中。
有的错误是程序编写有问题造成的,比如本来应该输出整数结果输出了字符串,这种错误我们通常称之为bug,bug是必须修复的。
原文:https://realpython.com/python-traceback/
反射机制就是在运行时,动态的确定对象的类型,并可以通过字符串调用对象属性、方法、导入模块,是一种基于字符串的事件驱动。
我们程序在开发过程中,总会遇到各种各样的一些问题,有些是由于拼写、配置、选项等等各种引起的程序错误,有些是由于程序功能处理逻辑不完善引起的漏洞,这些统称为我们程序中的异常
类与实例相互关联,类是对象的定义,而实例是"真正的实物",它存放了类中所定义的对象的具体信息
在 Python 中,数据属性和方法统称为属性。方法是可调用的属性。动态属性呈现与数据属性相同的接口——即,obj.attr——但是根据需要计算。这遵循 Bertrand Meyer 的统一访问原则:
本文是廖雪峰的Python教程的笔记,主要是摘抄一些重点,以及自己想到的一些重点。所以我把他划分到转载里。
程序员编写特定的代码,专门用来捕捉这个异常(这段代码与程序逻辑无关,与异常处理有关)
本文介绍了如何使用TensorFlow进行模型训练和推理,并探讨了在训练和推理过程中可能遇到的错误和解决方法。
由于网状的R会话,中嵌入一个Python会话rgee和地球引擎的Python API 共享相同的模块,类,函数和方法。换句话说,语法的逻辑是相同的,并且同样快(只需将.更改为$)。尽管如此,R 和 Python 的语言设计差异在特定场景下可能会导致一些问题。我们确定了三个潜在的错误案例。它们中的每一个都在下面进行了深入解释。
封装一个python函数并将其用作TensorFlow op。给定一个python函数func,它以numpy数组作为参数并返回numpy数组作为输出,将这个函数包装为张量流图中的一个操作。下面的代码片段构造了一个简单的TensorFlow图,它调用np.sinh() NumPy函数作为图中的操作:
本文介绍了Mask Rcnn目标分割项目的搭建及运行过程,并对搭建过程中可能出现的问题进行了解答。
hw = tf.constant("Hello World! Mtianyan love TensorFlow!")
概念 借用java中的定义:在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法;对于任意一个对象,都能够调用它的任意一个方法和属性 module2.py #!/usr/bin/env python # -*- coding:utf-8 -*- __author__ = 'shouke' class TestClass: def __init__(self): pass def fun(self): pass module1.py 1、不导入模块 #!/usr/bin/env python # -*- coding:utf-8 -*- __author__ = 'shouke' if __name__ == '__main__': print(globals()) 运行结果 运行结果: {'__author__': 'shouke', '__loader__': <_frozen_importlib.SourceFileLoader object at 0x01F5C310>, '__name__': '__main__', '__builtins__': , '__package__': None, '__doc__': None, '__cached__': None, '__file__': 'F:/project/interface_project/module1.py'} 说明:globals函数返回一个map,map中的key是全局范围内对象的名字,value是该对象的实例 2、导入模块 修改module1.py代码如下 #!/usr/bin/env python # -*- coding:utf-8 -*- __author__ = 'shouke' import sys if __name__ == '__main__': print(globals()) 运行结果: {'__loader__': <_frozen_importlib.SourceFileLoader object at 0x01D9C310>, 'sys': , '__package__': None, '__builtins__': , '__author__': 'shouke', '__name__': '__main__', '__doc__': None, '__file__': 'F:/project/interface_project/module1.py', '__cached__': None} 如上,新增了带颜色部分的内容 3.导入类 修改module1.py代码如下 #!/usr/bin/env python # -*- coding:utf-8 -*- __author__ = 'shouke' from module2 import TestClass if __name__ == '__main__': print(globals()) 输出结果: {'TestClass': , '__package__': None, '__doc__': None, '__file__': 'F:/project/interface_project/module1.py', '__cached__': None, '__builtins__': , '__loader__': <_frozen_importlib.SourceFileLoader object at 0x01DFC310>, '__author__': 'shouke', '__name__': '__main__'} 如上,新增了带颜色部分的内容 4、结合getattr,callable函数 #!/usr/bin/env python # -*- coding:utf-8 -*- __author__ = 'shouke' from module2 import TestClass if __name__ == '__main__': # 动态获取类 print('动态获取类:%s'% globals()['TestClass']) print('\n') # 获取类的属性和函数 print(dir(TestClass)) print('\n') print(getattr(TestClass,'fun')) # 获取类的函数对象 print(getattr(globals()['TestClass'](),'attr')) # 获取类实例的属性对象print('\n') print(callable(getattr(TestClass,'fun'))) # 查看类的函数对象是否
通过 for 语句我们可以使用 for 循环。Python 里的 for 循环与 C 语言中的不同。这里的 for 循环遍历任何序列(比如列表和字符串)中的每一个元素。下面给出示例:
本文介绍了在Tensorflow中使用protobuf时遇到的报错问题,通过升级protobuf库版本以及使用默认的pool来解决这个问题。同时,文章也介绍了一些可能的原因和解决方法。
数据封装、继承和多态只是面向对象程序设计中最基础的 3 个概念。在 Python 中,面向对象还有很多高级特性,允许我们写出非常强大的功能。
本文是个人python学习笔记,学习资料为廖雪峰python教程,如需更多内容,请移步廖老师官方网站。
当看到本篇时,根据TensorFlow官方标准《Deep MNIST for Experts》(https://tensorflow.google.cn/get_started/mnist/pros),你已经达到Expert Level,要恭喜了。 且不说是否夸大其词,换一种角度,假如能乘坐时光机仅往回飞5年,借此CNN实现,你也能在ImageNet上叱咤风云,战无不胜。就算飞不回去,它在今天依然是大杀伤力武器,大批大批老算法等着你去枪毙,大片大片垂直领域换代产品等着你去落地。这还不够么? 上一篇Tenso
[TensorFlow深度学习入门]实战十·用RNN(LSTM)做时间序列预测(曲线拟合) %matplotlib inline import os os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" import numpy as np import matplotlib.pyplot as plt import tensorflow as tf # hyperparameters lr = 0.002 # learning rate
我叫 Jacob,是 Google AI Resident 项目的研究学者。我是在 2017 年夏天加入该项目的,尽管已经拥有了丰富的编程经验,并且对机器学习的理解也很深刻,但此前我从未使用过 TensorFlow。当时我觉得凭我的能力应该很快就能上手。但让我没想到的是,学习曲线相当的陡峭,甚至在加入该项目几个月后,我还偶尔对如何使用 TensorFlow 代码来实现想法感到困惑。我把这篇博文当作瓶中信写给过去的自己:一篇我希望在学习之初能被给予的入门介绍。我希望这篇博文也能帮助到其他人。
本节学习来源斯坦福大学cs20课程,有关自学与组队学习笔记,将会放于github仓库与本公众号发布,欢迎大家star与转发,收藏!
由于 Python 数据模型,您定义的类型可以像内置类型一样自然地行为。而且这可以在不继承的情况下实现,符合鸭子类型的精神:你只需实现对象所需的方法,使其行为符合预期。
译:A Beginner's Guide to Generative Adversarial Networks (GANs) https://skymind.ai/wiki/generative-adversarial-network-gan
今天有读者跟我反馈一个问题:他在电脑d盘根目录创建了一个:json.py的python文件,打算练习一下json中的两个函数:loads()和dumps()。
CardView 简介 CardView 是 Google 官方发布 MD 风格卡片布局控件,开发者可以很方便的使用它将布局做成卡片效果。在使用 CardView 之前,多少应该对它有一定的了解,下面将对其实现做简单的介绍。
【新智元导读】TensorFlow 今天发布最新版 1.2.0,公布了14大最新功能。新智元带来最新介绍,包括 API 的重要变化、contrib API的变化和Bug 修复及其他改变。附代码链接。 主要的功能和改进 1. Windows上支持Python3.6。 2. 时空域去卷积(spatio temporal deconvolution.)增加了tf.layers.conv3d_transpose层。 3. 增加了tf.Session.make_callable( ),为多次运行一个相同步骤的运行提供
领取专属 10元无门槛券
手把手带您无忧上云