高层次的多线程编程中,条件变量是个常见的同步方法,跟传统仅使用互斥量的方法相比,条件变量可以减少锁的竞争.
条件变量给了线程以无竞争的方式等待特定条件发生。条件变量是和互斥量一起使用的,条件变量是由互斥量保护的。这么讲,大家可能不明白,这条件变量有什么用?干什么的?还是结合pthread_cond_wait()函数来分析一下吧!
说明:本篇博客整理自文末的多篇参考博客(每篇博客各有侧重)。本文结合源码对Unsafe的park和unpark方法进行了完整全面的梳理,并对部分参考博客中存在的错误描述进行说明。
今天因为工作需要,需要帮同事用C语言(不是C++)写一个生产者消费者的任务队列工具库,考虑到不能使用任何第三库和C++的任何特性,所以我将任务队列做成一个链表,生产者在队列尾部加入任务,消费者在队列头部取出任务。很快就写好了,代码如下: /** * 线程池工具, ctrip_thread_pool.h * zhangyl 2018.03.23 */ #ifndef __CTRIP_THREAD_POOL_H__ #define __CTRIP_THREAD_POOL_H__ #include
1 条件变量 条件变量是一种同步机制,允许线程挂起,直到共享数据上的某些条件得到满足。 1.1 相关函数 #include <pthread.h> pthread_cond_t cond = PTHREAD_COND_INITIALIZER; int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t*cond_attr); int pthread_cond_signal(pthread_cond_t *cond); int
Condition Variable(简称Condition)是Posix定义的一种同步机制 - Thread为了某些数据的特定状态,而阻塞执行,等待其它Thread的通知。使用时有个限制 - Condition Variable必须与Mutex关联使用。怎么感觉有点像关联到信号量的Event?
什么叫互斥量,顾名思义就是咱这么多人,只能有一个使用这个资源,就像共享小单车,一次只能给一个人用,一个人下车锁车了,另一个人才能去扫码开锁。
pthread_mutex_lock()函数是一个阻塞型的上锁函数,若互斥锁已经上了锁,调用pthread_mutex_lock()函数对互斥锁再次上锁的话,调用线程会阻塞,直到当前互斥锁被解锁。 pthread_mutex_trylock()函数是一个非阻塞型的上锁函数,如果互斥锁没被锁住,pthread_mutex_trylock()函数将把互斥锁加锁, 并获得对共享资源的访问权限;如果互斥锁被锁住了,pthread_mutex_trylock()函数将不会阻塞等待而直接返回EBUSY(已加锁错误),表示共享资源处于繁忙状态。 如果互斥锁变量mutex已经上锁,调用pthread_mutex_unlock()函数将解除这个锁定,否则直接返回。该函数唯一的参数mutex是pthread_mutex_t数据类型的指针。该函数调用成功返回0,否则返回-1。
条件变量是线程间同步的一种机制,本文分析条件变量的实现和使用。我们先看一下条件变量的定义。
信号量强调的是线程(或进程)间的同步:“信号量用在多线程多任务同步的,一个线程完成了某一个动作就通过信号量告诉别的线程,别的线程再进行某些动作(大家都在sem_wait的时候,就阻塞在那里)。当信号量为单值信号量时,也可以完成一个资源的互斥访问。信号量测重于访问者对资源的有序访问,在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源。
前言 这是一篇关于在线音频播放的文章,参考自苹果OS X的demo。 在移植到iOS后,可以通过iphone播放Mac上面的音频,实现在线播放音频的功能。 本文可以学习到socket编程、AudioFileStream转换音频流、AudioQueue播放音频、信号量的使用。 正文 demo有两个工程,分别是servers和client。 servers是OS X的应用,作为服务端,负责发送音频流数据; client是iOS的应用,作为客户端,负责接收音频流数据; 音频数据通过AudioFil
条件变量是线程可用的一种同步机制,条件变量给多个线程提供了一个回合的场所,条件变量和互斥量一起使用,允许线程以无竞争的方式等待特定的条件发生。
与OpenMP相比,Pthreads的使用相对要复杂一些,需要我们显式的创建、管理、销毁线程,但也正因为如此,我们对于线程有更强的控制,可以更加灵活的使用线程。这里主要记录一下Pthreads的基本使用方法,如果不是十分复杂的使用环境,这些知识应该可以了。本文大部分内容都是参考自这里,有兴趣的可以看一下原文。
执行线路即为程序的控制流程.pthreads的线程库允许程序在同一时刻运行多个函数
而AQS中的控制线程又是通过LockSupport类来实现的,因此可以说,LockSupport是Java并发基础组件中的基础组件。LockSupport定义了一组以park开头的方法用来阻塞当前线程,以及unpark(Thread thread)方法来唤醒一个被阻塞的线程。LockSupport提供的阻塞和唤醒方法如下:
生产者消费者模型主要有以下函数和对象 //线程锁对象 pthread_mutex_t mutex; //用于初始化pthread_mutex_t锁对象 pthread_mutex_init(&mutex, NULL); //用于销毁pthread_mutex_t锁对象 pthread_mutex_destroy(&mutex) //线程条件对象 pthread_cond_t cond; //用于初始化pthread_cond_t线程条件对象 pthread_cond_init(&cond, NU
线程属性主要有: (1)线程的分离状态属性detachstate, (2)线程栈末尾的警戒缓冲区大小guardsize, (3)线程栈的最低地址statckaddr, (4)线程栈的大小stacksize。 如果对现有某个线程的终止状态不感兴趣的话,可以使用pthread_detach函数让操作系统在线程退出时候收回它所占用的资源。
前面两节讲了线程的一些基础知识,这一节还是关于线程的内容,主要说一下线程的同步问题。线程的同步是一个很重要的内容,因为这关系到线程之间的协调合作,否则可能会产生冲突。
实现线程池的基本思路是:先创建几个固定的线程,让每个线程运行起来,然后通过互斥锁和条件变量使得每个线程进入等待状态,当需要分派线程时,改变条件变量,使得某个线程退出等待状态开始执行传入的函数参数,执行完后重新进入等待状态。
之前一直在看POSIX的多线程编程,上个周末结合自己的理解,写了一个基于Qt的用条件变量同步线程的例子。故此来和大家一起分享,希望和大家一起交流。
Thread 1 监听socket,协议栈的连接上来后,使用现有的或新建线程处理连接。
Pthreads 有几种工作模型,例如 Boss/Workder Model、Pileline Model(Assembly Line)、Background Task Model、Interface/Implementation Model,详细介绍可以参考 pthread Tutorial,这里给出一个流水线模型(Pipeline Model)的简单示例。在该示例中,主线程开启了两个子线程,一个子线程用来读取文件,一个子线程用于将结果写入文件,而主线程自身用来计算。
在单线程的程序里,有两种基本的数据:全局变量和局部变量。但在多线程程序里,还有第三种数据类型:线程数据(TSD: Thread-Specific Data)。
这个问题其实第一次接触虚假唤醒就有答案了,但是当时太拽,留下张图啥也不讲明白,导致现在又不知道是为什么了。。。
原文发布于微信公众号 - 云服务与SRE架构师社区(ai-cloud-ops),作者李勇。
进程与线程之间是有区别的,不过linux内核只提供了轻量进程的支持,未实现线程模型。Linux是一种“多进程单线程”的操作系统。Linux本身只有进程的概念,而其所谓的“线程”本质上在内核里仍然是进程。
多线程编程中,需要对共享变量进行加锁。但是频繁地加锁,会对程序效率有很大影响。在某些读多写少的场景下,多个线程进行读数据时,如果都加互斥锁,这显然是不必须的。于是读写锁便应运而生。 读写锁的加锁规则: 1 如果没有加写锁时,那么多个线程可以同时加读锁;如果有加写锁时,不可以加读锁 2 不管是加了读锁还是写锁,都不能继续加写锁。 满足这两个条件,便可以初步实现一个读写锁。我们用两个锁,一个变量,实现一个简单的读写锁,代码如下 class rwlock { public: rwlock(): read_cnt
引入: 举个例子,我们想买个生活用品,但是没有交易场所的话,我们就只能直接去供货商那里去买。我们每人每次买一两件,对于供货商来说,为了这一两件商品去开启厂子里的机器进行生产,是很亏本的事情。因此,有了交易场所——超市等存在,它们作为交易商品的媒介,工作就是集中需求,分发产品。 消费者和生产者之间通过超市进行交易。当消费者没有消费的同时,生产者也可以继续生产;当消费者过来消费的同时,生产者也可以停止生产(例子:周内生产者上班生产商品,学生上学不来超市购买商品;周末生产者放假休息,不进行生产工作,学生过来超市购买商品)。由此,生产和消费这两件事就可以解耦了,我们把临时保存产品的场所称为缓冲区。
同步是指协调多个执行线程或进程的执行,以确保它们按照一定的顺序执行或在特定的条件下等待。常见的同步机制包括信号量、条件变量和屏障等。
load :将共享变量ticket从内存加载到寄存器中 update : 更新寄存器里面的值,执行-1操作 store :将新值,从寄存器写回共享变量ticket的内存地址
在没有新消息进入的时候,receiver 应该放弃共享缓冲区的锁,然后进入睡眠等待 sender 唤醒。 然而上述代码的问题在于,「放弃缓冲区锁」和「进入睡眠」不是一步原子操作,而是独立的两步操作。
指一组进程中的各个进程均占有不会释放的资源, 但因互相申请被其他进程所占用不会释放的资源而处于的一种永久等待的状态
今天是最后一篇关于Linux线程编程的文章分享,在这里我们先掌握基础的概念及其应用,后面在慢慢去深入学习。最近看到一句说的非常在理:理论’是你知道是这样,但它却不好用。‘实践’是它很好用,但你不知道是为什么。我想大多数学习者,和我一样,在学习的过程中,都会或多或少的有这种情况,不过自己坚信,你把基础打好(同时学的过程中,不要好高骛远,三心二意的,把自己先暂时用到的东西学明白,再去学其他东西,不要当前的,没学会,又跑去学其他的,而且又学不会,这样浪费时间和精力;这个这里基础打好,举个例子,你的c语言功底要打好,对指针的使用非常熟悉,甚至一些高级用法就是要平时慢慢积累和总结,以及内存原理要知道为什么是这样等方面),后面实战的话,就好多了,至少不会说我这个东西不会那个东西又不会,这样会让自己很痛苦当初为啥没学好基础,现在实战中漏洞百出。好了,废话不多说了,开始下面的主题分享:
线程 为什么使用线程? 使用fork创建进程以执行新的任务,该方式的代价很高——子进程将父进程的所有资源都复制一遍。 多个进程之间不会直接共享内存。 进程是系统分配资源的基本单位,线程是进程的基本执行
Linux互斥与同步 零、前言 一、Linux线程互斥 1、基本概念及引入 2、互斥量mutex介绍 3、互斥量的使用 4、互斥量原理 二、可重入/线程安全 1、基本概念 2、线程安全 3、重入函数 4、联系与区别 三、常见锁概念 四、Linux线程同步 1、基本概念 2、条件变量的使用 3、条件变量等待 4、条件变量使用规范 五、POSIX信号量 1、信号量概念及介绍 2、信号量的使用 零、前言 本章主要讲解学习Linux中对多线程的执行中的同步与互斥 一、Linux线程互斥 1、基本概念及引入 互
一切互斥操作的依赖是 自旋锁(spin_lock),互斥量(semaphore)等其他需要队列的实现均需要自选锁保证临界区互斥访问。
引入:举个例子,比如我们学生想买东西,但是如果没有交易场所超市,那么我们只能去供货商去买东西,那我们只能如果要一件供货商只能生成一件,对于供货商来说生成的成本太大了,所以有了交易场所超市这个媒介的存在。目的就是为了集中需求,分发产品。
引言:上篇文章说到了多进程并发式的服务端模型,如上一篇文章所述,进程的频繁创建会导致服务器不堪负载,那这一篇博客主要讲述的是线程模型和线程池的方式来提高服务端的负载能力。同时比较一下不同的模型的好处与坏处。 (如果不加以说明,我们都是考虑开发是基于GNU/Linux的)在Linux下创建一个线程的方式很简单,pthread_create() 函数来创建线程,其中的一个参数的回调函数,也就是线程本身的执行体函数。 void *thread_entry( void * args ); 这里不过多的强调怎样利用线
在线程并发执行的时候,我们需要保证临界资源的安全访问,防止线程争抢资源,造成数据二义性。
Well, conditional variables allow you to wait for certain condition to occur. In practice your thread may sleep on conditional variable and other thread wakes it up.
学生是典型的消费者,供货商是典型的生产者。假设学生有泡面、火腿肠、玩具等等的需求,而供货商会生产尽可能覆盖学生需求的商品,但是一般并不会直接卖给学生,而是供货给超市,从而在超市里做买卖。
如果传递的参数是一个变量的地址,由于这是共享内存空间,变量对所有线程可见,很有可能在新线程访问它之前,此内存位置的值发生了更改。
不是什么时候都要靠上锁的。从根源出发,我们为什么需要上锁?因为线程在使用资源的过程中可能会出现冲突,对于这种会出现冲突的资源,还是锁住轮着用比较好。
LockSupport类是java.util.concurrent包中各种锁实现的基础。了解LockSupport的内部机制,对于我们理解concurrent包中的各种锁的实现有很大帮助。
由于锁是自旋锁,线程不会休眠,所以当低优先级线程先对操作进行Lock造作后,CPU调度高优先级线程造作,由于低优先级别UnLock就调用高优先级线程。高优先级无法处理该操作,而高优先级线程一直调用CPU资源, 系统等待高优先级线程执行完毕后才给低优先级线程资源。
#include <pthread.h> //线程 int pthread_create(pthread_t *tid, const pthread_attr_t *attr, void *(*func)(void*), void *arg); int pthread_join(pthread_t *tid, void **status); pthread_t pthread_self(void); int pthread_detach(pthread_t tid); void pthread_e
最后运行的结果不是固定的,有可能是0、-1,如果有这个ticket_num变量代表是库存的话,那么就会出现库存为负数的情况,所以需要引入线程同步来保证线程安全。
这个线程池是在学习完《Linux/UNIX系统编程手册》中线程相关知识后用来练手的小项目,线程相关函数都是直接调用Linux的API,并且使用了C++中的queue和vector。 虽然C++中也提供了线程创建、互斥锁等函数库,但是也是对系统函数的封装。并且作为初学,先学会用原生函数比较好。
领取专属 10元无门槛券
手把手带您无忧上云