df.groupby(['Mt']).apply(lambda x: x['Count'].idxmax())]
先按Mt列进行分组,然后对分组之后的数据框使用idxmax函数取出Count最大值所在的列,再用iloc位置索引将行取出....agg({'pred_class': [', '.join],'pred': lambda x: list(x),
'id_part': 'first'}).reset_index()
4.删除包含特定字符串所在的行...df = pd.DataFrame({'a':[1,2,3,4], 'b':['s1', 'exp_s2', 's3','exps4'], 'c':[5,6,7,8], 'd':[3,2,5,10]}...)
df[df['b'].str.contains('exp')]
5.组内排序
df = pd.DataFrame([['A',1],['A',3],['A',2],['B',5],['B',9]],...df.groupby('name').apply(lambda x: x.sort_values('score', ascending=False)).reset_index(drop=True)
6.选择特定类型的列