首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

帕累托Pareto Chart)

今天要跟大家分享的图表是帕累托! ▽▼▽ 这种图表类似于之前曾分享过的直方图,但是又比直方图所能展现的数据信息更多,由一个降序排列的柱形和一个升序排列的带数据点标记的百分比折线图构成。...●●●●● 折线图反应的是数据增长趋势,柱形反应的是实际的数据增长指标。 首先还是来看下原数据结构: ?...选中B列、C列数据,插入簇状柱形。 ? ? 然后更改Accumulative的数据序列图表类型为带数据点的散点图,同时启用次坐标轴。 ?...用鼠标选中图表柱形的数据条,然后将鼠标移至原数据B列右下角,当鼠标变成小十字的时候用鼠标向上拖动一个单位,去掉空白单元格。 ?...然后打开设置数据序列格式菜单,调整柱形数据条间距,以及散点图线条颜色、数据点颜色。 ? ? 同时柱形数据条的颜色也需要更改,与散点图及线条颜色一致。 ? 这样,帕累托就基本完成了!

1.9K50
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    WWW2021 微信的多目标推荐任务PAPERec

    1:用户的目标级别的个性化偏好示例 因此,我们提出了一种个性化近似帕累托最优的多目标推荐框架Personalized Approximate Pareto-Efficient Recommendation...二、背景知识 在介绍PAPERec模型之前,我们先简单回顾一下Pareto efficiency相关的经典定义(更多细节请参考[1][2]): 我们基于2给出一个帕累托优化的直观定义。...2:帕累托最优示例 在帕累托最优中,scalarization是一个常见的方法。...模型使用Transformer和list-wise GRU等对特征交互和序列特征进行建模,具体的模型结构如下: 3:Pareto-oriented RL模型结构 我们使用了相同结构的feature encoder...5:不同模型的多目标结果二维 最后,我们还在objective-level personalization上进行了定量的研究。

    2.6K32

    遗传算法系列之五:多目标遗传算法和遗传编程

    若 I1 没有被其他解所支配,则 I1 称为 Pareto 解。Pareto 解的集合被称为Pareto front。...真正的多目标优化应该求解出Pareto front,选择Pareto front中的解应该提交人工解决。基于Pareto 排序的多目标遗传算法便是致力求解出 Pareto front。...上面两种适应度函数都能够挖掘种群中 Pareto 支配关系,效果如下图所示(左边的图表示 NSGA 和 NAGA-II 的适应度函数,右边的是 MOGA 的适应度函数)。 ?...因为笛卡尔遗传编程的表现型是,所以有人将笛卡尔遗传编程归入基于的遗传编程。这里,我们将所有基因型是线性字符串的遗传编程归入线性遗传编程类别。...2.3 基于的遗传编程 树是一种特殊的,因此人们很自然地想到将基于树的遗传编程扩展到基于的遗传编程。下图就是基于的遗传编程的基因型的一个示例。 ?

    6.4K60

    MATLAB绘图怎么变得更好看

    同样用的都是MATLAB,为啥大佬们画的都那么好看,而你画的都是简单、普通,那是因为我们掌握的基础元素不一样,只有掌握了最基本的基础元素,再加上日益增长的审美,才会有一张好图出来。...expolar 简单绘制极坐标图 plotmatrix 分散矩阵绘制 bar 条形 feather 矢量 rose 角直方图 barh 水平条形 fill 多边形填充 scatter 散点图 comet...彗星图 fplot 函数绘制 stem 杆 compass 相对原点的向量 hist 直方图 Stairs 梯形 errorbar 误差带 pareto Pareto ezplot 简单绘制函数...Pie 饼 pie&pareto绘图举例 subplot(121) x[1 3 0.5 2.5 2]; explode=[0 1 0 0 0];%表示饼被分为五块,其中第二块被分离出来突出显示...pie(x,explode) subplot(122) names={'一','二','三','四','五'}; pareto(x,names) 发布者:全栈程序员栈长,转载请注明出处:https

    1.1K20

    matlab多目标优化算法之NSGA-Ⅱ【含源代码】

    多目标优化问题的解决办法有两类:一种是通过加权因子等方法将多目标转换成单目标优化问题,这种方法缺点明显;现在更多地是采用基于Pareto最优解的方法。 2....Pareto最优解 Pareto最优解是指:一个解的多目标中,其中任何一个目标都无法在改进同时保证不会使其他目标函数恶化。...结合上述支配关系,重新理解Pareto最优解,即:当一个解不被其他任何解支配时,就称其为Pareto最优解。可行解中的所有Pareto最优解一起组成了Pareto前沿。...而基于Pareto最优解的方法就是找到这个Pareto前沿。 3. NSGA-Ⅱ NSGA-Ⅱ是基于遗传算法,引入快速非支配排序方法、拥挤度计算和精英策略的多目标优化计算方法。...主要流程: 快速非支配排序:计算每个个体的非支配等级(Pareto等级),在种群P中,当前Pareto最优解的个体的非支配等级为1,然后除去这些等级为1的个体,组成的新种群P’,在新种群P’中最优解的非支配等级为

    5.3K41

    论文拾萃|多目标优化Knee前沿搜索方法研究进展

    因此,聚焦于搜索Pareto前沿的knee区域显得尤为重要,近年来也得到了越来越多学者的关注。...与Pareto前沿的其他部分不同,knee区域具有明显的几何特征,即knee区域Pareto前沿的曲率发生突变。二是利用Pareto前沿上评价解之间权衡的指标。...基于距离的方法:连接Pareto前沿的极端点形成直线(超平面),计算Pareto前沿上点到该直线(超平面)的距离,距离最大的解即为knee。 ?... DEB2DK和DEB3DK测试问题的Pareto前沿以及knee点分布情况 三、最后,文章对knee的研究提出了展望,指出一是结合强化学习等机器学习方法,提高knee检测的效率和效果;二是开发用于展示高维...Pareto前沿knee特征的可视化方法;三是将基于knee的进化算法应用到需要动态决策的问题中。

    1.2K31

    多目标优化算法(一)NSGA-Ⅱ(NSGA2)

    4 ZDT1 pareto最优解对比(绿色为理论值,红色为实验值) 3.2 ZDT2 f 1 = x 1 f_1=x_1 f1​=x1​ g = 1 + 9 ( ( ∑ i = 2 n x i...5 ZDT2 pareto最优解对比(绿色为理论值,红色为实验值) 3.3 ZDT3 f 1 = x 1 f_1=x_1 f1​=x1​ g = 1 + 9 ( ( ∑ i = 2 n x i...6 ZDT3 pareto最优解对比(绿色为理论值,红色为实验值) 3.4 ZDT4 f 1 = x 1 f_1=x_1 f1​=x1​ g = 1 + 9 ∗ 10 + ∑ i = 2 n...7 ZDT4 pareto最优解对比(绿色为理论值,红色为实验值) 3.5 ZDT6 f 1 = 1 − e − 4 x 1 s i n 6 ( 6 π x 1 ) f_1=1-e^{-4x_1}...8 ZDT6 pareto最优解对比(绿色为理论值,红色为实验值) 从结果中可以看出,除ZDT4以外,找到的解几乎全部是pareto前端上的点,并且解在目标空间上分布十分均匀,该算法对于非凸非均匀的多目标函数最优解的寻找还是十分有效的

    7.1K43

    CVPR 2021 | AttentiveNAS:通过注意力采样改善神经架构搜索

    突破帕累托最差集的性能极限可能会导致一个更好的优化的权重共享,这样所有可训练的组件(如通道和层),在最终的性能贡献中发挥其最大潜力。...感兴趣的子网络 Pareto-best architecture set 给定一个优化状态 W(权重共享的参数),如果没有其他架构 比 在获得更少或相似的计算开销的同时却可以获得更好的性能,则子网是...通过将 设置为始终吸引 Pareto 最佳或最差体系结构的感知采样分布,可以进行 Pareto感知采样。...此优化目标制定如下: 当且仅当 是Pareto最佳子网(或Pareto最差子网)时, 才定义为1,否则为0。...如果目标是专注于Pareto最佳体系结构,则指定 ,其中 是指示函数。如果目标是专注于Pareto最差架构,则将 。 ?

    1.5K20

    多目标演化算法 | 从参考点出发,求解高维多目标优化问题!

    实践表明,针对不同形状的Pareto前沿(PF),选择合适的参考点,比如理想点或天底点(Nadir point),对提高算法性能具有重要意义。...此外,在基于Pareto支配关系的算法中,支配抵抗解(Dominance resistant solutions,DRSs)易于出现,但难以及时发现并剔除,进而降低算法的收敛速度。...在该算法中,我们首先采用与NSGA-III算法类似的方法,对种群进行归一化处理;其次,根据Pareto支配关系找出非支配解集和被支配解集;接着,运用非支配解集估计PF的形状,形状类型主要包括凹状,凸状或线性等...六 PaRP/EA算法与其它算法对比实验结果 七则是在15目标WFG7和WFG7-1测试问题上各算法的最终解集分布。...Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II.

    3.7K40
    领券