首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

(翻译)性能监控之百分位数监控

从统计学上讲,有很多方法可以确定应用程序提供的整体体验有多好。平均值被广泛使用。它们很容易理解和计算——但它们可能会产生误导。 这篇文章是关于百分位数的。...我将解释什么是百分位数,以及如何使用它们更好地理解应用程序性能。与平均值相比,百分位数告诉我们应用程序响应时间有多一致。...百分位数可以做出很好的近似,可用于趋势分析,SLA 协议监视以及每天评估/对性能进行故障排除。...在现实中,大多数应用程序都有一些非常重要的异常值,这些异常值对平均值的影响很大。 三、百分位数说明 当您想从高级角度了解应用程序的执行情况时,理解百分位数的概念是很有用的。...四、百分比在性能监控 请看 2018 年 6月月度概述的百分位数图表(右下角): ? 图中用蓝色表示平均响应时间,用黑色、灰色和浅灰色绘制第 50、90 和 95 百分位数: ?

1.7K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    ElasticSearch 如何使用 TDigest 算法计算亿级数据的百分位数?

    ElasticSearch 如何使用 TDigest 算法计算亿级数据的百分位数? 大家好,我是历小冰。...百分位数 ElasticSearch 可以使用 percentiles 来分析指定字段的百分位数,具体请求如下所示,分析 logs 索引下的 latency 字段的百分位数,也就是计算网站请求的延迟百分位数...对于少量数据,在内存中维护一个所有值的有序列表, 就可以计算各类百分位数,但是当有几十亿数据分布在几十个节点时,这类算法是不现实的。...因此,percentiles 使用 TDigest 算法,它是一种近似算法,对不同百分位数的计算精确度不同,较为极端的百分位数范围更加准确,比如说 1% 或 99% 的百分位要比 50% 的百分位要准确...对应的,计算百分位数也只需要从这些质心数中找到对应的位置的质心数,它的平均值就是百分位数值。 image.png 很明显,质心数的个数值越大,表达它代表的数据越多,丢失的信息越大,也就越不精准。

    3.7K00

    ElasticSearch 如何使用 TDigest 算法计算亿级数据的百分位数?

    百分位数 ElasticSearch 可以使用 percentiles 来分析指定字段的百分位数,具体请求如下所示,分析 logs 索引下的 latency 字段的百分位数,也就是计算网站请求的延迟百分位数...与之形成对比的是,平均延时在 200ms 左右。 ? 和前文的 cardinality 基数一样,计算百分位数需要一个近似算法。...对于少量数据,在内存中维护一个所有值的有序列表, 就可以计算各类百分位数,但是当有几十亿数据分布在几十个节点时,这类算法是不现实的。...因此,percentiles 使用 TDigest 算法,它是一种近似算法,对不同百分位数的计算精确度不同,较为极端的百分位数范围更加准确,比如说 1% 或 99% 的百分位要比 50% 的百分位要准确...对应的,计算百分位数也只需要从这些质心数中找到对应的位置的质心数,它的平均值就是百分位数值。 ? 很明显,质心数的个数值越大,表达它代表的数据越多,丢失的信息越大,也就越不精准。

    1.1K30

    视频质量评估的新方式:VMAF百分位数

    正文字数:4964 阅读时长:7分钟 在这篇博客文章中,我们介绍了一种新的基于计算视频多方法评估融合(VMAF)百分位数的视觉质量评估方法。...在这篇博客文章中,我们介绍了一种新的基于计算视频多方法评估融合(VMAF)百分位数的视觉质量评估方法。...例如,VMAF工具已经可以汇总谐波平均值并输出一个百分位数。在此博客的上下文中,在计算了序列的所有帧的VMAF分数之后,我们计算了第1个,第5个,第10个,第25个和第50个百分位数。...根据定义,第5个百分位数给了我们最差的5%帧的VMAF分数,而第50个百分位数是中值。...该计算仅涉及计算所有帧的VMAF分数,计算百分位数,并从最低到最高绘制或制表。 确定VMAF百分位数与人类视觉的相关性还需要做更多的工作。

    3.1K10

    神经网络中的分位数回归和分位数损失

    待预测的四分位数(百分位数)在列中为[0.500,0.700,0.950,0.990,0.995],在行中为批大小[1,4,16,64,256],总共有25个预测。...与前一种情况一样,低于指定百分位数值的样本百分比通常接近指定值。分位数预测的理想形状总是左上角图中红线的形状。它应该随着指定的百分位数的增加而平行向上移动。...可以看到低于指定百分位数值的样本百分比通常接近指定值。当向5x5图的右下方移动时,分位数预测的形状偏离了正弦形状。在图的右下方,预测值的红线变得更加线性。...检测“扁平化”的方法之一是一起计算第50、68和95个百分位值,并检查这些值之间的关系,即使要获得的最终值是99.5百分位值。...P0:第50个百分位值 P1:第68个百分位值 P2:第95百分位值 P3: 99.5百分位值 使用上述变量,可以使用以下流程图获得适当的99.5%百分位数值。

    64410

    统计学里面的百分位数是什么意思

    百分位数: 统计学术语,如果将一组数据从大到小排序,并计算相应的累计百分位,则某一百分位所对应数据的值就称为这一百分位的百分位数。...可表示为:一组n个观测值按数值大小排列如,处于p%位置的值称第p百分位数。 中位数是第50百分位数。...若求得第p百分位数为小数,可完整为整数。 分位数是用于衡量数据的位置的量度,但它所衡量的,不一定是中心位置。百分位数提供了有关各数据项如何在最小值与最大值之间分布的信息。...对于无大量重复的数据,第p百分位数将它分为两个部分。大约有p%的数据项的值比第p百分位数小;而大约有(100-p)%的数据项的值比第p百分位数大。对第p百分位数,严格的定义如下。...第p百分位数是这样一个值,它使得至少有p%的数据项小于或等于这个值,且至少有(100-p)%的数据项大于或等于这个值。 高等院校的入学考试成绩经常以百分位数的形式报告。

    20K70

    Micrometer中0.5 0.9 0.99三个百分位数详解

    Micrometer的Timer类中的publishPercentiles方法使用0.5, 0.95, 0.99这三个百分位数,是因为它们在性能监控和SLA(Service Level Agreement...在系统性能监控领域,这三个百分位数代表了不同的性能指标,有助于开发者和运维人员快速识别系统的性能瓶颈和潜在问题。...下面对这三个百分位数进行详细解析: 0.5(Median)中位数:中位数表示所有观测值排序后位于中间位置的值。它可以有效避免异常值的影响,提供对数据集中心趋势的度量。...0.95(95th Percentile):95th 百分位数表示在所有观测值中,有95%的数据低于这个值。它是评估系统在高负载情况下性能的重要指标,尤其是在需要确保绝大多数用户获得良好体验的情况下。...这三个百分位数共同构成了一个全面的性能评估框架,帮助开发和运维团队从不同角度理解系统的性能特性。通过监控这些关键百分位数,可以更有效地预防和诊断性能问题,从而提升用户体验和服务可靠性。

    16700

    R获取数值向量的分位数值

    我们来看个具体的例子 a=1:10 summary(a) 我们可以得到下面的结果,summary(a)一共得到6个数值,分别是a的最小值,1/4分位数,中值(2/4分位数),均值,3/4分位数和最大值。...第一四分位数 (Q1),又称“较小四分位数”,等于该样本中所有数值由小到大排列后第25%的数字。 第二四分位数 (Q2),又称“中位数”,等于该样本中所有数值由小到大排列后第50%的数字。...这个函数除了可以输出固定这这个几个分位数值以外,还可以输出你指定的分位数值。...quantile(a,c(0,0.25,0.35,0.5,0.75,1)) 接下来我们看看数值矩阵 b=matrix(1:20,nrow=4) summary(b) 默认会算出每一列的最小值,1/4...如果我们要取出每一列的中值,直接使用下面的方法是得不到数值的,是一个字符串。

    1.1K10

    用于时间序列概率预测的分位数回归

    图(A): 分位数回归 分位数回归概念 分位数回归是估计⼀组回归变量X与被解释变量Y的分位数之间线性关系的建模⽅法。 以往的回归模型实际上是研究被解释变量的条件期望。...⽽⼈们也关⼼解释变量与被解释变量分布的 中位数,分位数呈何种关系。它最早由Koenker和Bassett(1978)提出。 OLS回归估计量的计算是基于最⼩化残差平⽅。...分位数回归估计量的计算也是基于⼀种⾮对称形式 的绝对值残差最⼩化。其中,中位数回归运⽤的是最⼩绝对值离差估计(LAD,least absolute deviations estimator)。...分位数回归的优点 (1)能够更加全⾯的描述被解释变量条件分布的全貌,⽽不是仅仅分析被解释变量的条件期望(均 值),也可以分析解释变量如何影响被解释变量的中位数、分位数等。...图 (E):分位数预测 预测区间和置信区间的区别 预测区间和置信区间在流行趋势中很有帮助,因为它们可以量化不确定性。它们的目标、计算方法和应用是不同的。下面我将用回归来解释两者的区别。

    70310

    使用Python指定列提取连续6位数据的单号(上篇)

    一、前言 前几天在Python最强王者交流群【哎呦喂 是豆子~】问了一个Python数据提取的问题,一起来看看吧。...大佬们请问下 指定列提取连续6位数据的单号(该列含文字、数字、大小写字母等等),连续数字超过6位、小于6位的数据不要,这个为啥有的数据可以提取 有的就提取不出来?...下图是提取成功的: 下图是提取失败的: 二、实现过程 这里【猫药师Kelly】给了一个思路,使用C老师帮忙助力: 不过误报数据有点高 提取连续6位数据的单号(该列含文字、数字、大小写字母、符号等等...),连续数字超过6位、小于6位的数据不要。...这篇文章主要盘点了一个Python正则表达式数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

    19730

    使用Python指定列提取连续6位数据的单号(中篇)

    一、前言 前几天在Python最强王者交流群【哎呦喂 是豆子~】问了一个Python数据提取的问题,一起来看看吧。...大佬们请问下 指定列提取连续6位数据的单号(该列含文字、数字、大小写字母等等),连续数字超过6位、小于6位的数据不要,这个为啥有的数据可以提取 有的就提取不出来?...上一篇文章大家激烈探讨,但是暂时还没有找到更好的思路,这一篇文章我们继续沿着上篇文章的讨论,来看看吧!...后来【郑煜哲·Xiaopang】也给了一个思路,如下所示: 不过可惜的是正则表达式不太好用,误报比较大,现在得换思路。【Wayne.Wu】提出多正则表达式匹配规则助力。...这篇文章主要盘点了一个Python正则表达式数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

    16320

    MongoDB脚本:集合中字段数据大小的分位数统计

    日常开发中,有时需要了解数据分布的一些特点,比如这个colllection里documents的平均大小、全部大小等,来调整程序的设计。...对于系统中已经存在大量数据的情况,这种提前分析数据分布模式的工作套路(最佳实践)可以帮助我们有的放矢的进行设计,避免不必要的过度设计或者进行更细致的设计。...如果想获得某个collection相关的各种存储统计信息,可以使用 collStats。...下面的命令可以显示 COLLECTION 中满足条件status=’active’,字段FIELD_A, FIELD_B的数据大小的quantile analysis。...实际使用时用自己的集合名、字段名以及过滤条件进行替换即可。 //最大的Top10和百分比分布。

    1.7K20

    一种基于实时分位数计算的系统及方法

    二、基础架构与解决方案 本节我们将从计算分位数的常用数据结构、我们实现分位数计算的基础架构、解决方案三部分介绍流式计算场景下的分位数计算方法: 2.1 分位数的常用数据结构 TDigest计算分位数...TDigest是一个简单,快速,精确度高,可并行化的近似百分位算法,被Spark, ES, Kylin等系统使用。...如上图所示,在实时分位数计算的通用组件中,其基础架构和执行过程主要分为以下几个关键步骤: 从上游业务方读取需要统计分位数的原始数据 根据业务方需求的分组规则,按分组聚合为TDigest数据结构,...的数据合并为一个TDigest数据结构 5)将聚合后的数据与Redis中存储的数据进行合并,同时将合并结果写回Redis中 6)最后根据数据聚合结构,从每个分组对应的TDigest结构中获取对应的分位数...在实际的计算过程中,可以利用流式计算的FlatMap算子,按照上述的排列组合方式,将一条数据扩展为多条数据,并进行分组聚合、计算分位数,将最终的计算结果存入Doris等存储引擎中供用户查询。

    99620

    用于时间序列概率预测的共形分位数回归

    分位数回归 QR QR 估算的是目标变量的条件量值,如中位数或第 90 个百分位数,而不是条件均值。通过分别估计不同水平预测变量的条件量值,可以很好地处理异方差。...对所有数据范围都会产生一个固定的宽度。 共形分位数回归CQR 为什么不同时使用 QR 和 CP 呢?共形分位数回归(CQR)技术提供了一个值得称赞的解决方案,可以提供具有有效覆盖保证的预测区间。...CQR 的构建 其过程可概括如下: 首先,我们将历史时间序列数据分为训练期、校准期和测试期。 然后在训练数据上训练分位数回归模型。应用训练模型生成校准数据的量化预测。...然后根据公式 (1) 计算一致性得分。绘制符合性得分直方图,以定义容差水平,如图 (B)。 然后根据公式 (2) 调整不同量化值的预测区间。...环境要求 NeuralProphet 有三个选项: (i) 分位数回归 (QR) (ii) 保形预测 (CP) (iii) 保形分位数回归 (CQR),用于处理预测的不确定性。 !

    38610

    2-6 两个有序序列的中位数 (20 分)

    本文链接:https://blog.csdn.net/shiliang97/article/details/101025378 2-6 两个有序序列的中位数 (20 分) 已知有两个等长的非降序序列S1..., S2, 设计函数求S1与S2并集的中位数。...有序序列A​0​​,A​1​​,⋯,A​N−1​​的中位数指A​(N−1)/2​​的值,即第⌊(N+1)/2⌋个数(A​0​​为第1个数)。 输入格式: 输入分三行。...第一行给出序列的公共长度N(0的信息,即N个非降序排列的整数。数字用空格间隔。 输出格式: 在一行中输出两个输入序列的并集序列的中位数。...3 4 5 6 输出样例1: 4 输入样例2: 6 -100 -10 1 1 1 1 -50 0 2 3 4 5 输出样例2: 1 想半天,其实就是把两个数组存进去,找中间那个就行,并集也不是去重啥的,

    55430

    按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值

    一、前言 前几天在Python星耀交流群有个叫【在下不才】的粉丝问了一个Pandas的问题,按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值,这里拿出来给大家分享下,一起学习...888] df = pd.DataFrame({'lv': lv, 'num': num}) def demean(arr): return arr - arr.mean() # 按照"lv"列进行分组并计算出..."num"列每个分组的平均值,然后"num"列内的每个元素减去分组平均值 df["juncha"] = df.groupby("lv")["num"].transform(demean) print(df...df.groupby('lv')["num"].transform('mean') df["juncha"] = df["num"] - df["gp_mean"] print(df) # 直接输出结果,省略分组平均值列...这篇文章主要分享了Pandas处理相关知识,基于粉丝提出的按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值的问题,给出了3个行之有效的方法,帮助粉丝顺利解决了问题。

    3K20
    领券